1. [1pt each] Find a solution of the congruence/the system of congruences:
 (a) \(7x \equiv 8 \pmod{325} \).
 (b) \(x \equiv 3 \pmod{7}, x \equiv 4 \pmod{19}, x \equiv 10 \pmod{23} \).

2. [1pt each] Let \(M_2(\mathbb{Z}) \) be the set of all \(2 \times 2 \) matrices \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \) with \(a, b, c, d \in \mathbb{Z} \). Let \(M_2(\mathbb{Q}) \) be the set of all \(2 \times 2 \) matrices with \(a, b, c, d \in \mathbb{Q} \).
 (a) Show that \(M_2(\mathbb{Z}) \) and \(M_2(\mathbb{Q}) \) are non-commutative rings with the identity.
 (b) Is \(M_2(\mathbb{Z}) \) a subring of \(M_2(\mathbb{Q}) \)?
 (c) Find all units of \(M_2(\mathbb{Z}) \), and all units of \(M_2(\mathbb{Q}) \).
 (d) Find all zero divisors of \(M_2(\mathbb{Z}) \), and find all zero divisors of \(M_2(\mathbb{Q}) \).

3. [1pt each] Let \(R \) be the set of all positive real numbers. Define a new addition \(\oplus \) and multiplication \(\otimes \) on \(R \) by
 \[a \oplus b = ab, \quad a \otimes b = a^{\log b} \]
 (a) Is \(R \) a ring under these operations?
 (b) Is \(R \) a commutative ring?
 (c) Is \(R \) a field?

4. [1pt each]
 (a) Let \(S = \{0, 2, 4, 6, 8\} \) be a subset of \(\mathbb{Z}_{10} \). Is \(S \) a subring of \(\mathbb{Z}_{10} \)? Does \(S \) have the multiplicative identity?
 (b) Let \(\mathbb{Q}(\sqrt{3}) = \{ a + b\sqrt{3} \mid a, b \in \mathbb{Q} \} \). Is \(\mathbb{Q}(\sqrt{3}) \) a subfield of \(\mathbb{R} \)?
 (c) Let \(R \) be a ring with identity. If \(ab \) and \(a \) are units in \(R \), is \(b \) a unit in \(R \)?
 (d) If \(R \) and \(S \) are integral domains, then is \(R \times S \) an integral domain?
 (e) If \(R \) and \(S \) are fields, then is \(R \times S \) a field?
5. [1pt each]
 (a) Consider $\mathbb{R} \times \mathbb{R}$ with the usual addition and a new multiplication
 \[(a, b) \otimes (c, d) = (ac - bd, ad + bc)\]
 Show that $\mathbb{R} \times \mathbb{R}$ is a field.
 (b) Let T be the set of continuous functions from \mathbb{R} to \mathbb{R}. Let $f, g \in T$ are given by
 \[f(x) = \begin{cases}
 0 & \text{if } x \leq 2 \\
 x - 2 & \text{if } x > 2
 \end{cases}
 \]
 and
 \[g(x) = \begin{cases}
 2 - x & \text{if } x \leq 2 \\
 0 & \text{if } x > 2
 \end{cases}
 \]
 Show that T is not an integral domain.
 (c) Let R be a ring such that $a^3 = a$ for every $a \in R$. Show that R is commutative.
 (d) Let R be a ring with identity. If there is a smallest positive integer n such that $n1_R = 0$, then R is said to have characteristic n. If no such n exists, R has characteristic zero. Show that \mathbb{Z} has characteristic zero, and \mathbb{Z}_n has characteristic n. What is the characteristic of $\mathbb{Z}_3 \times \mathbb{Z}_6$?

6. [1pt each]
 (a) Let
 \[R = \left\{ \left(\begin{array}{cc} a & -b \\ b & a \end{array} \right) | a, b \in \mathbb{R} \right\} .\]
 Define
 \[f : R \to \mathbb{C}, f \left(\left(\begin{array}{cc} a & -b \\ b & a \end{array} \right) \right) = a + b\sqrt{-1} .\]
 Show that f is a ring homomorphism. Is it 1 − 1? or onto? Is f an isomorphism?
 (b) Let $(\mathbb{Z}, \oplus, \odot)$ be the ring with a new addition and a new multiplication
 \[a \oplus b = a + b - 1, \ a \odot b = ab - (a + b) + 2 .\]
 Show that $(\mathbb{Z}, \oplus, \odot)$ is isomorphic to $(\mathbb{Z}, +, \times)$ (with the usual addition and multiplication).

Practice Problems: Page 448: 8, 12. Page 53: A 5,10,11,15,21; B.20,22,25,31,37.