The GCD–Formula

Notation: The prime decomposition of an integer \(n > 1 \) is its prime factorization of the form

\[
n = p_1^{e_1} \cdot p_2^{e_2} \cdot \ldots \cdot p_r^{e_r},
\]

where \(p_1 < p_2 < \ldots < p_r \) are distinct primes.

If \(p \) is any prime number, then the integer

\[
\text{expt}_p(n) := \begin{cases}
e_i, & \text{if } p = p_i \text{ for some } i \\ 0, & \text{if } p \ne p_i \text{ for any } i \end{cases}
\]

is called the exponent of \(p \) in \(n \).

Theorem 9 ("GCD–Formula"): Let \(m, n \in \mathbb{Z} \) be non-zero integers.

a) \(m|n \iff \text{expt}_p(m) \leq \text{expt}_p(n) \), for all primes \(p \).

b) For any prime \(p \) we have

\[
\text{expt}_p(\gcd(m, n)) = \min(\text{expt}_p(m), \text{expt}_p(n)).
\]

Thus, if \(p_1 < p_2 < \ldots < p_r \) denote the distinct prime factors of \(m \cdot n \), then

\[
\gcd(m, n) = p_1^{g_1} p_2^{g_2} \cdots p_r^{g_r},
\]

where \(g_i = \min(\text{expt}_{p_i}(m), \text{expt}_{p_i}(n)) \).