The Division Algorithm

Definition: Let $f, g \in R[x]$ be polynomials. Then we say that f divides g in R[x], if there is a polynomial $h \in R[x]$ such that

$$g = f \cdot h;$$

we then write $f|_R g$ (or just $f|_{\mathcal{G}}$, if the reference to R is clear).

Theorem 2 (Division algorithm for F[x])

Let $F = \mathbb{C}, \mathbb{R}, \mathbb{Q}$ or \mathbb{F}_p (but not \mathbb{Z} !). Then for each pair $f, g \in F[x], g \neq 0$, there exist unique polynomials $q, r \in F[x]$ such that

$$(1) f(x) = q(x)g(x) + r(x),$$

(2)
$$\deg(r) < \deg(g).$$

Notation: We write

quot(f, g) := q(x), the quotient of f by g, rem(f, g) := r(x), the remainder of f by g.

Corollary 1: $g|_F f \iff \text{rem}(f,g) = 0.$

Corollary 2: If $f, g \in \mathbb{Q}[x]$, then

$$f|_{\mathbb{Q}}g \iff f|_{\mathbb{R}}g \iff f|_{\mathbb{C}}g.$$