The Remainder Theorem

Theorem 3 (Remainder Theorem). If $f \in F[x]$, (where $F = \mathbb{Q}, \mathbb{R}, \mathbb{C}$ or \mathbb{F}_p), and $a \in F$, then

$$rem(f, x - a) = f(a).$$

Theorem 4 (Factor Theorem). If $f(x) \in R[x]$ and $a \in R$, where $R = \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, or \mathbb{F}_p , then

$$x - a \mid f(x) \iff f(a) = 0.$$

Remarks. 1) The Factor Theorem shows that there is a close connection between:

linear factors of a polynomial f(x), and roots of a polynomial (i.e. solutions of f(x) = 0).

- 2) The Factor Theorem is due to Descartes (1596–1650). Moreover, D'Alembert (1717–1783) proved:
- Corollary 1. A non-zero polynomial $f(x) \in F[x]$ of degree n has at most n roots in F.
- Corollary 2. If f and $g \in F[x]$ are two polynomials of degree $\leq n$ such that

$$f(a_i) = g(a_i), \quad 1 \le i \le n+1,$$

for n+1 distinct elements a_1, \ldots, a_{n+1} , then f=g.

Corollary 3. Suppose that $f(x) \in F[x]$ and that g(x) is a polynomial of the form

(1)
$$g(x) = c(x - a_1)(x - a_2) \cdots (x - a_n)$$

with distinct roots $a_1, \ldots, a_n \in F$, i.e. $a_i \neq a_j$, for all $i \neq j$. Then r(x) := rem(f, g) is the unique polynomial r(x) of degree $\leq n-1$ such that

(2)
$$r(a_i) = f(a_i), \text{ for } 1 \le i \le n.$$

The Substitution Method for finding rem(f, g):

Assume: g(x) has the form (1) (with distinct a_i 's).

Step 1: Write

rem
$$(f, g) = r_0 + r_1 x + \ldots + r_{n-1} x^{n-1}$$
.

Step 2: By (2), we have the following system of n linear equations in the unknowns r_0, \ldots, r_{n-1} :

$$r_0 + r_1 a_1 + \dots + r_{n-1} a_1^{n-1} = f(a_1)$$

 \vdots
 $r_0 + r_1 a_n + \dots + r_{n-1} a_n^{n-1} = f(a_n).$

Step 3: Solve this system (by row reduction and back-substitution) to find r_0, \ldots, r_{n-1} and hence also rem(f, g).