The Remainder Theorem

Theorem 3 (Remainder Theorem). If \(f \in F[x] \), (where \(F = \mathbb{Q}, \mathbb{R}, \mathbb{C} \) or \(\mathbb{F}_p \)), and \(a \in F \), then
\[
\text{rem}(f, x - a) = f(a).
\]

Theorem 4 (Factor Theorem). If \(f(x) \in R[x] \) and \(a \in R \), where \(R = \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C} \), or \(\mathbb{F}_p \), then
\[
x - a \mid f(x) \iff f(a) = 0.
\]

Remarks.
1) The Factor Theorem shows that there is a close connection between:
 - linear factors of a polynomial \(f(x) \), and
 - roots of a polynomial (i.e. solutions of \(f(x) = 0 \)).

2) The Factor Theorem is due to Descartes (1596–1650). Moreover, D’Alembert (1717–1783) proved:

Corollary 1. A non-zero polynomial \(f(x) \in F[x] \) of degree \(n \) has at most \(n \) roots in \(F \).

Corollary 2. If \(f \) and \(g \in F[x] \) are two polynomials of degree \(\leq n \) such that
\[
f(a_i) = g(a_i), \quad 1 \leq i \leq n + 1,
\]
for \(n+1 \) distinct elements \(a_1, \ldots, a_{n+1} \), then \(f = g \).
Corollary 3. Suppose that \(f(x) \in F[x] \) and that \(g(x) \) is a polynomial of the form

\[
g(x) = c(x - a_1)(x - a_2) \cdots (x - a_n)
\]

with distinct roots \(a_1, \ldots, a_n \in F \), i.e. \(a_i \neq a_j \), for all \(i \neq j \). Then \(r(x) := \text{rem}(f, g) \) is the unique polynomial \(r(x) \) of degree \(\leq n - 1 \) such that

\[
r(a_i) = f(a_i), \quad \text{for } 1 \leq i \leq n.
\]

The Substitution Method for finding \(\text{rem}(f, g) \):

Assume: \(g(x) \) has the form (1) (with distinct \(a_i \)'s).

Step 1: Write

\[
\text{rem}(f, g) = r_0 + r_1 x + \ldots + r_{n-1} x^{n-1}.
\]

Step 2: By (2), we have the following system of \(n \) linear equations in the unknowns \(r_0, \ldots, r_{n-1} \):

\[
\begin{align*}
 r_0 + r_1 a_1 + \cdots + r_{n-1} a_1^{n-1} &= f(a_1) \\
 \vdots \\
 r_0 + r_1 a_n + \cdots + r_{n-1} a_n^{n-1} &= f(a_n).
\end{align*}
\]

Step 3: Solve this system (by row reduction and back-substitution) to find \(r_0, \ldots, r_{n-1} \) and hence also \(\text{rem}(f, g) \).