Irreducible Polynomials

- **Definition:** A polynomial $f(x) \in F[x]$ is called irreducible over F (or in F[x]) if $\deg(f) > 0$ and if its only factors are c and cf(x), where $c \in F, c \neq 0$, is any non-zero constant. If $\deg(f) > 0$ and f is not irreducible, then f is called reducible over F.
- **Note:** If $\deg(f) > 0$, then f is reducible over $F \Leftrightarrow$ there exists $g \in F[x]$ with $0 < \deg(g) < \deg(f)$ and g|f.
- **Theorem 7** a) Every linear polynomial $f(x) = x a \in F[x]$ is irreducible in F[x].
 - b) If f is irreducible in F[x] and $deg(f) \ge 2$, then $f(a) \ne 0$, for all $a \in F$.
 - c) If deg(f) = 2 or 3, then f is irreducible in F[x] if and only if $f(a) \neq 0$, for all $a \in F$.
- Remark. The theorem shows that there is a partial relationship between the following two concepts:
 - (i) f(x) is reducible in F[x];
 - (ii) f(x) has a root in F.
 - Indeed, we have (ii) \Leftrightarrow (i) if $\deg(f) = 2$ or 3, but in general we only have (ii) \Rightarrow (i).