Unique Factorization for Polynomials

- **Recall:** If F is a field and $f \in F[x]$, where $\deg(f) > 0$, then f is reducible over $F \Leftrightarrow$ there exists $g \in F[x]$ with $0 < \deg(g) < \deg(f)$ such that g|f.
- **Theorem 9** (Unique Factorization Theorem) Let $f \in F[x]$, $f \neq 0$. Then there exists $c \in F$ and distinct monic irreducible polynomials $p_1, p_2, \ldots, p_r \in F[x]$ and positive integers n_1, n_2, \ldots, n_r such that

(1)
$$f(x) = c \cdot p_1(x)^{n_1} p_2(x)^{n_2} \cdots p_r(x)^{n_r}$$
.

Moreover, c, the polynomials p_1, \ldots, p_r and the integers n_1, \ldots, n_r are uniquely determined by f (up to order).

- Notation For a monic irreducible polynomial $p \in F[x]$ put $\exp_p(f) = \begin{cases} n_i & \text{if } p = p_i \\ 0 & \text{if } p \neq p_i \text{ for any } i \end{cases}$
- **Corollary** (GCD-formula) If $f, g \in F[x]$, then $f|g \Leftrightarrow \exp t_p(f) \leq \exp t_p(g)$, for all monic irreducible polynomials $p \in F[x]$. Thus:

$$\operatorname{expt}_p(\gcd(f,g)) = \min(\operatorname{expt}_p(f), \operatorname{expt}_p(g)).$$