Complex Numbers

Set of complex no's: $\mathbb{C} = \{x + iy : x, y \in \mathbb{R}\}.$

If z = x + iy, $x, y \in \mathbb{R}$, then Re(z) = x and Im(z) = y are called the real and imaginary parts of z.

Addition: Componentwise.

Multiplication: Use the fact that $i^2 = -1$:

$$(x+iy)(a+ib) = (xa-yb) + i(ya+xb).$$

Complex Conjugate: $\overline{z} = x - iy$, if z = x + iy.

- $0) \ \overline{z} = z \iff z \in \mathbb{R}$
- $1) \ \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- $2) \ \overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$
- 3) $\overline{z^n} = \overline{z}^n$, for all $n = 1, 2, \dots$
- $4) \ \overline{\overline{z}} = z.$

Absolute Value: $|z| = \sqrt{x^2 + y^2}$, if z = x + iy.

- $0) |z|^2 = z\overline{z}.$
- 1) $|z| \ge 0$, and |z| = 0 if and only if z = 0.
- $2) |z_1 z_2| = |z_1| \cdot |z_2|.$
- 3) $|z_1 + z_2| \le |z_1| + |z_2|$.

Inverses and Division: Use complex conjugate:

$$\frac{z_1}{z_2} = \frac{z_1 \overline{z_2}}{|z_2|^2}.$$

Geometrical Representation:

Polar Coordinates: (r, θ) , where

$$r = \sqrt{x^2 + y^2} = |z|$$
 (absolute value)
 $\theta = \arg(z)$ (argument)
= the angle in the diagram, $(0 \le \theta < 2\pi)$.

Moreover, by trigonometry we have

$$x = r \cos \theta$$
, $y = r \sin \theta$,

which yields the polar form representation of z:

$$z = |z|(\cos \theta + i \sin \theta).$$

The Multiplication Rule: We have

$$z_1 z_2 = r_1 r_2 (\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)).$$
whenever
$$\begin{cases} z_1 = r_1 (\cos(\theta_1) + i \sin(\theta_1)) \\ z_2 = r_2 (\cos(\theta_2) + i \sin(\theta_2)) \end{cases}$$

Thus, to multiply two complex numbers, multiply their absolute values and add their arguments.

Powers (De Moivre's Formula): We have

$$z^n = r^n(\cos(n\theta) + i\sin(n\theta)),$$
 for all $n \ge 1$,
and any $z = r(\cos(\theta) + i\sin(\theta)).$

The *n*-th Roots of $a = r(\cos(\alpha) + i\sin(\alpha))$ are:

$$z_k = r^{\frac{1}{n}} \left(\cos \left(\frac{\alpha + 2\pi k}{n} \right) + i \sin \left(\frac{\alpha + 2\pi k}{n} \right) \right),$$

where $0 \le k < n$. Thus there are n such roots which are spaced equidistantly on the circle of radius $r^{\frac{1}{n}}$.

Exponentials and Euler's Formula: The function

$$e^z = e^x(\cos(y) + i\sin(y)), \quad z = x + iy,$$

satisfies the exponential law: $e^{z_1 + z_2} = e^{z_1}e^{z_2}$. Thus $e^{i\theta} = \cos(\theta) + i\sin(\theta)$. (Euler's Formula)