The Calculus of Remainders

Notation: 1) If $a, m \in \mathbb{Z}$ are integers and m > 0, then $\operatorname{rem}(a, m)$ denotes the remainder obtained when a is divided by m; i.e. $r = \operatorname{rem}(a, m)$ satisfies

$$0 \le r < m$$
 and $r = a - qm$,

for some integer q.

2) For integers $a, b, m \in \mathbb{Z}$ write

$$a \equiv b \pmod{m}$$
 or $a \equiv b \pmod{m}$

if a and b have the same remainders when divided by m:

$$rem(a, m) = rem(b, m).$$

Theorem 1: $a \equiv b \pmod{m} \iff m | (a - b)$.

Theorem 2: (Computational Rules)

Let $a \equiv b \pmod{m}$, $c \equiv d \pmod{m}$ and $n \in \mathbb{N}$. Then:

- a) $a \pm c \equiv b \pm d \pmod{m}$;
- b) $ac \equiv bd \pmod{m}$;
- c) $a^n \equiv b^n \pmod{m}$.