The RSA-Method

Description: 1) Each user \(A\) has a public key \((n_A, e_A)\) which is kept in a public directory. These numbers have the form

\[
n_A = p \cdot q, \quad \text{where } p \neq q \text{ are large primes}
\]

\[
1 < e_A < n_A, \quad \gcd(e_A, (p - 1)(q - 1)) = 1.
\]

2) Each user \(A\) also has a secret key \(d_A\) (which is known only to \(A\)). It satisfies the condition

\[
e_A \cdot d_A \equiv 1 \pmod{(p - 1)(q - 1)}.
\]

Usage: To send a (secret) message to \(A\):

0) Translate your (text) message into a sequence of numbers \(m_1, m_2, \ldots, m_r\) with \(m_i < n_A\):

- Agree on a block length (e.g. 4 char.'s/block)
- Use: \(00 = \text{blank}, 01 = A, 02 = B, \ldots, 26 = Z\).

1) Encode the message by calculating

\[
M_i = \text{rem}(m_i^{e_A}, n_A).
\]

Transmit \(M_1, M_2, \ldots, M_r\) to \(A\).

2) The user \(A\) decodes the message by calculating

\[
m_i = \text{rem}(M_i^{d_A}, n_A).
\]
The RSA Method

Example: \[n_A = 101284087 \quad e_A = 1234567 \quad \text{public information} \]

Then: \[n_A = p \cdot q = 10061 \cdot 10067 \quad k = (p - 1)(q - 1) = 101263960 \quad d_A = 36933543 \quad \text{secret} \]

Note: \(e_A d_A \equiv 1 \pmod{k} \).

Messages: to encode the message \(m_1, m_2, \ldots, m_r \): calculate \(M_k = \text{rem}(m_k^{e_A}, n_A) \).

to decode: calculate \(m_k = \text{rem}(M_k^{d_A}, n_A) \).

<table>
<thead>
<tr>
<th>Message</th>
<th>Text</th>
<th>Encoded</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_1 = 20080919)</td>
<td>This</td>
<td>(M_1 = 18463460)</td>
</tr>
<tr>
<td>(m_2 = 00091900)</td>
<td>is</td>
<td>(M_2 = 81091624)</td>
</tr>
<tr>
<td>(m_3 = 20151600)</td>
<td>top</td>
<td>(M_3 = 39290746)</td>
</tr>
<tr>
<td>(m_4 = 19050318)</td>
<td>secr</td>
<td>(M_4 = 47738594)</td>
</tr>
<tr>
<td>(m_5 = 05200000)</td>
<td>et</td>
<td>(M_5 = 77028351)</td>
</tr>
</tbody>
</table>