Problem 6: Compute gcd's of numbers:
 (i) \(\text{gcd}(12345, 54321) \):
 \[
 \text{gcd}(12345, 54321); \quad 3 \tag{1}
 \]
 Thus, the gcd of 12345 and 54321 is 3.
 (ii) \(\text{gcd}(213141516171, 262524232221) \):
 \[
 \text{gcd}(213141516171, 262524232221); \quad 3 \tag{2}
 \]
 Thus, \(\text{gcd}(213141516171, 262524232221) = 3 \).

Problem 7: Constructing lists.
 (a) The list \(L \) of length 12 with \(k \)-th entry \(\text{gcd}(k^2, 24) \):
 \[
 L := [\text{seq}(\text{gcd}(k^2, 24), k = 1 .. 12)]; \quad L := [1, 4, 3, 8, 1, 12, 1, 8, 3, 4, 1, 24] \tag{3}
 \]
 The 10th element of \(L \) is:
 \[
 L[10]; \quad 4 \tag{4}
 \]
 (b) The list of lists \(LL \) of length 12 whose \(k \)-th entry is the ordered pair \((k, \text{gcd}(k^2, 12))\). (Note that an ordered pair is the same as a list of length 2.)
 \[
 LL := [\text{seq}([k, \text{gcd}(k^2, 12)], k = 1 .. 12)]; \quad LL := [[1, 1], [2, 4], [3, 3], [4, 4], [5, 1], [6, 12], [7, 1], [8, 4], [9, 3], [10, 4], [11, 1], [12, 12]] \tag{5}
 \]
 The element \(LL[9] \) is the 9th ordered pair, and \(LL[9,2] \) is the second element of this ordered pair:
 \[
 LL[9]; LL[9, 2]; \quad [9, 3] \tag{6}
 \]
 (c) A one-line function \(f(x) \) to compute \(x^2 - x + 1 \):
 \[
 f := x \rightarrow x^2 - x + 1; \quad f := x \rightarrow x^2 - x + 1 \tag{7}
 \]
 The value of \(f(x) \) at \(x = 20 \) is:
 \[
 f(20); \quad 381 \tag{8}
 \]