Review of Linear Independence

Definition: A set of vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k \in \mathbb{R}^n$ is called a linear independent set if

(1)
$$c_1 \vec{v}_1 + \ldots + c_k \vec{v}_k = \vec{0}, c_1, \ldots, c_k \in \mathbb{R}$$

 $\Rightarrow c_1 = c_2 = \ldots = c_k = 0.$

Note: Linear independence can be checked by row reduction. More precisely, if

 $A = (\vec{v}_1 | \vec{v}_2 | \dots | v_k)$ is the associated $n \times k$ matrix, then condition (1) holds if and only if

(2) $A\vec{w} = \vec{0} \implies \vec{w} = \vec{0}$, for all $\vec{w} \in \mathbb{R}^k$ because $A(c_1, \dots, c_k)^t = c_1\vec{v}_1 + \dots + c_k\vec{v}_k$. By row reduction, (2) holds if and only if

(3) $\operatorname{rank}(A) = k,$

where, if R is a row echelon form (REF) of A,

 $\operatorname{rank}(A) \stackrel{\text{defn}}{=} \# \text{ of nonzero rows of } R$ = # of leading 1's in R.

Refinement: As before, let $A = (\vec{v}_1 | \vec{v}_2 | \dots | v_k)$ be an $n \times k$ matrix, and let R be a REF of A. Put

 $I = \{i : \text{column } i \text{ of } R \text{ contains a leading } 1\}$ so that (by definition) rank(A) = #I.

Then we have:

- 1) the set $\{\vec{v}_i\}_{i\in I}$ is a linear independent set;
- 2) the set $\{\vec{v}_i\}_{i\in I}$ spans the space $V = \langle \vec{v}_1, \dots \vec{v}_k \rangle$. Thus, $\{\vec{v}_i\}_{i\in I}$ is a basis of V and hence

$$\dim V = \operatorname{rank}(A) = \#I.$$

Example. Find a basis of $V = \langle \vec{v}_1, \dots, \vec{v}_4 \rangle$, where $\vec{v}_1 = (1, 2, 3, 4, 5), \vec{v}_2 = (1, 2, 2, 2, 2),$ $\vec{v}_3 = (0, 0, 1, 2, 3), \vec{v}_4 = (1, 1, 1, 1, 1) \in \mathbb{R}^5.$

Solution. Put $A = (\vec{v}_1 | \vec{v}_2 | \vec{v}_3 | \vec{v}_4)$. By row reduction we obtain

$$A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 2 & 2 & 0 & 1 \\ 3 & 2 & 1 & 1 \\ 4 & 2 & 2 & 1 \\ 5 & 2 & 3 & 1 \end{pmatrix} \leftrightarrow \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = R.$$

and so the leading 1's of R (REF) are in columns 1, 2 and 4. Thus, $I = \{1, 2, 4\}$ and hence by 1), 2):

$$\{\vec{v}_1, \vec{v}_2, \vec{v}_4\}$$
 is a basis of V .

In particular, dim V = rank(A) = #I = 3, so V is 3-dimensional.

Note: If n = k, then the linear independence of the vectors $\vec{v}_1, \ldots, \vec{v}_n \in \mathbb{R}^n$ is equivalent to several other properties of the $n \times n$ matrix $A = (\vec{v}_1 | \cdots | \vec{v}_n)$, as the following basic fact from Linear Algebra shows:

Fact: If A is an $n \times n$ matrix, then the following properties are equivalent:

- (i) A is invertible, i.e., there is a matrix B such that AB = BA = I.
- (ii) The columns of A are linearly independent.
- (iii) $A\vec{x} = \vec{0} \Rightarrow \vec{x} = 0.$
- (iv) $A\vec{x} = \vec{y}$ has a solution \vec{x} for every $\vec{y} \in \mathbb{R}^n$.
- (iv') $A\vec{x} = \vec{y}$ has a unique solution for every $\vec{y} \in \mathbb{R}^n$.
- (v) $\operatorname{rank}(A) = n$.
- (vi) $det(A) \neq 0$.

Proof Sketch:

- $(ii) \Leftrightarrow (iii) \Leftrightarrow (v)$: See the above discussion.
- $(i) \Rightarrow (iv)' \Rightarrow (iv)$: Take $\vec{x} = B\vec{y}$.
- (iv) \Rightarrow (i): Take $B = (\vec{v}_1 | \dots | \vec{v}_n)$, where $A\vec{v}_i = \vec{e}_i$.
- (i) \Rightarrow (vi): Since $\det(A) \det(B) = \det(AB) = \det(I) = 1$, we have that $\det(A) \neq 0$.
- (vi) \Rightarrow (i): Cofactor formula for $B = A^{-1}$.