Properties of Constituent Matrices

Notation: If A is an $m \times m$ matrix, let

$$\operatorname{ch}_A(t) = (t - \lambda_1)^{m_1} (t - \lambda_2)^{m_2} \cdots (t - \lambda_s)^{m_s}$$

be the factorization of $\operatorname{ch}_A(t)$ (λ_i 's distinct), and let $\{E_{ik}\}$ be the set of constituent matrices of A.

For any $\lambda \in \mathbb{C}$ and $k \geq 0$ put

$$E_{\lambda,k}^{A} = \begin{cases} E_{ik} & \text{if } \lambda = \lambda_i \text{ and } k \leq m_i - 1\\ 0 & \text{otherwise.} \end{cases}$$

Theorem: Let $\lambda \in \mathbb{C}$ and $k \geq 0$. Then:

(a) If
$$A = \operatorname{diag}(A_1, \ldots, A_r)$$
, then

(1)
$$E_{\lambda,k}^A = \operatorname{diag}(E_{\lambda,k}^{A_1}, \dots E_{\lambda,k}^{A_r}).$$

(b) If
$$B = P^{-1}AP$$
, then

(2)
$$E_{\lambda,k}^B = P^{-1} E_{\lambda,k}^A P.$$

Corollary 1: In the situation of part (a) we have

(3)
$$E_{\lambda,k}^{A} = 0 \text{ for } k \ge \max(m_{A_1}(\lambda), \dots, m_{A_r}(\lambda)).$$

Application: The maximum size of a Jordan block.

Let $\lambda \in \mathbb{C}$, and put

 $t_A(\lambda) := \max\{k : J(\lambda, k) \text{ appears as a block in } J_A\},$ where J_A is the Jordan canonical form of A.

Corollary 2: We have that

(4)
$$E_{\lambda,k}^A = 0 \quad \Leftrightarrow \quad k \ge t_A(\lambda).$$

Remarks: 1) Recall that λ is a regular eigenvalue of $A \Leftrightarrow t_A(\lambda) = 1$. Thus by Corollary 2 we have λ is regular eigenvalue $\Rightarrow E_{\lambda,k}^A = 0$ for $k \geq 1$.

2) The number $t_A(\lambda)$ is connected with the generalized geometric multiplicities $\nu_A^p(\lambda)$ as follows:

(5)
$$\nu_A^k(\lambda) = \nu_A^{k+1}(\lambda) \quad \Leftrightarrow \quad k \ge t_A(\lambda).$$

Thus, we have the following pattern (if $t = t_A(\lambda)$):

$$0 < \nu_A^1(\lambda) < \dots < \nu_A^t(\lambda) = \nu_A^{t+1}(\lambda) = \dots$$

3) If we put

$$\mu_A(t) = (t - \lambda_1)^{t_A(\lambda_1)} \cdots (t - \lambda_s)^{t_A(\lambda_s)},$$

then $\mu_A(t)|\text{ch}_A(t)$ and we have $\mu_A(A)=0$ by the Spectral Decomposition Formula and (4). This refines the Cayley-Hamilton Theorem.