The Lagrange Interpolation Formula
Problem: ( “Fxact Fit") Given the n “data points”

(21, 91), (22,%2), - - -, (T, Yn), Where the x;’s are dis-
tinct, find a polynomial of least degree such that
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Theorem 1: (“Lagrange Interpolation Formula”) The
unique polynomial f(z) of degree < n — 1 which
passes through (x1,41), ..., (s, y,) is given by the
formula
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Note: There is a close connection between the l.a-
orange interpolation polynomial and remainders:

Theorem 2: Suppose

g(x) = (x —ar)(z —az) - (x — an),

where the a;’s are distinct. Then for any polynomial
f(x) we have

rem(£.9) = zfakek

where
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Thus, rem( f, g) is the Lagrange interpolation poly-
nomial of the data points (ay, f(ay)), (a9, f(a2)),

s (an, flan)).

Remarks. Note that the e;’s depend only on ¢ (and
not on f); we call these the constituent polynomials
of g.




