Orthogonal Matrices

- **Definition:** An $n \times n$ matrix $B = (\vec{b_1}|\vec{b_2}|\dots|\vec{b_n})$ is called orthogonal if its column vectors $\vec{b_1}, \vec{b_2}, \dots, \vec{b_n}$ form an orthonormal basis of \mathbb{R}^n .
- **Theorem 11:** If $B = (\vec{b}_1 | \vec{b}_2 | \dots | \vec{b}_n)$ is an $n \times n$ matrix, then the following conditions are equivalent:
 - (1) B is orthogonal (i.e. the column vectors $\vec{b}_1, \vec{b}_2, \ldots, \vec{b}_n$ are an orthonormal basis of \mathbb{R}^n ;
 - (2) $B^t B = I$, i.e. $B^{-1} = B^t$;
 - (3) $(B\vec{v} \cdot B\vec{w}) = (\vec{v} \cdot \vec{w})$, for all $\vec{v}, \vec{w} \in \mathbb{R}^n$;
 - (4) $||B\vec{v}|| = ||\vec{v}||$, for all $\vec{v} \in \mathbb{R}^n$.
- **Note:** Thus, the orthogonal matrices are precisely those that preserve lengths and angles (when viewed as a linear transformation).