Fourier Approximation

Problem C: Given: 1) A function \(g \in C[a, b] \), and 2) “simple” functions \(f_1, \ldots, f_k \in C[a, b] \).

Find: a linear combination

\[f_0 = a_1 f_1 + \ldots + a_k f_k \]

which best approximates the function \(g \) in the \(L^2 \)-norm; in other words, find \(f_0 \) as above such that

\[\int_a^b (f_0 - g)^2 dx \leq \int_a^b (f - g)^2, \]

for all functions \(f = a'_1 f_1 + \ldots + a'_n f_n \).

Solution: Step 1: Apply the Gram-Schmidt Method to the functions \(f_1, \ldots, f_k \) by defining the dot product of two functions \(f, g \in C[a, b] \) to be

\[(f \cdot g) = \int_a^b f(x)g(x)dx. \]

This gives us orthogonal functions \(h_1, \ldots, h_k \) which are certain linear combinations of \(f_1, \ldots, f_k \).

Step 2: Use the projection formula of Theorem 9:

\[f_0 = PV(g) = \sum_{i=1}^k \frac{(g \cdot h_i)}{(h_i \cdot h_i)} h_i \]