Power Convergent Matrices (Special Cases)

- **Definition:** A square matrix A is called power convergent if $\lim_{k\to\infty}A^k$ exists.
- **Theorem 4:** A diagonal matrix $A = \text{Diag}(\lambda_1, \dots, \lambda_m)$ is power convergent if and only if for each i with $1 \le i \le m$ we have:
 - (1) either $|\lambda_i| < 1$ or $\lambda_i = 1$.
- Corollary. A diagonable matrix A is power convergent if and only if each eigenvalue λ_i satisfies (1).
- **Theorem 5:** A Jordan block $J = J(\lambda, m)$ is power convergent if and only if
 - (2) either $|\lambda| < 1$ or $\lambda = 1$ and m = 1.
- Remark. The proof of Theorem 5 uses the fact that

$$|\lambda| < 1 \implies \lim_{n \to \infty} \binom{n}{a} \lambda^{n-a} = 0$$
, for all $a \in \mathbb{N}$.

Corollary. If $|\lambda| < 1$, then $\lim_{k \to \infty} J(\lambda, m)^k = 0$.