Math 211
Assignment 3

Due 2 November 2015

Do the following problems by hand (and show your work).

1. Verify that the following two identities hold for any \(n \geq 1 \):
 \[
 \sum_{k=0}^{n} \binom{n}{k} = 2^n \quad \text{and} \quad \sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0.
 \]
 Hint: Use \((x + y)^n\).

2. Find the following remainders (by hand). Explain your method by writing down your intermediate calculations.
 (a) \(\text{rem}(2^{12}, 63) \).
 (b) \(\text{rem}(8^5 + 9^5, 17) \).
 (c) \(\text{rem}(3^8 - 4^8, 10) \).
 (d) \(\text{rem}(24 \cdot 25 + 27 \cdot 29, 26) \).
 (e) \(\text{rem}(103 \cdot 65 + 329 \cdot 663, 33) \).

3. Use modulo 9 calculations to show that
 \[234785346 \cdot 5683592187 \neq 1334424157147691702. \]
 Note: Recall from class that if \(a = b \), then we know \(a \equiv b \pmod{n} \) for any \(n \in \mathbb{N} \), in particular \(a \equiv b \pmod{9} \).

4. Use modular arithmetic to find the following remainders by hand.
 \[
 \begin{align*}
 (a) \ & \text{rem}(5^{18}, 11); \\
 (b) \ & \text{rem}(7^{14}, 18).
 \end{align*}
 \]

5. Prove that every positive integer is congruent to the sum of its digits modulo 3.
 Hint: First, write \(n \) as
 \[n = c_r 10^r + c_{r-1} 10^{r-1} + \ldots + c_1 10 + c_0, \]
 where \(0 \leq c_i \leq 9 \) \((0 \leq i \leq r)\). (All I mean here is, for example, \(4536 = 4 \cdot 10^3 + 5 \cdot 10^2 + 3 \cdot 10^1 + 6 \).)
M1.[Optional. Not graded] (a) Use the MAPLE command \texttt{isolve(.)} to find the general integer solution of the Diophantine equation $8023x + 8249y = 1243$. Interpret your MAPLE output and compare it to the solution we obtained in Question 1(a) of Assignment #2.

(b) Use the MAPLE commands \texttt{ifactor(.)} and \texttt{ifactors(.)} to find the prime factorization of the number 123456789. Explain your output and comment on the similarity and difference between the two results obtained.

(c) Use the commands \texttt{ithprime(.)} and \texttt{[seq(.)]} to write a program \texttt{firstprimes(n)} which returns the list of the first n primes. Use it to find the first 20 and also the first 50 primes.