Do the following problems by hand (and show your work).

1. Let \(f, g \in F[x] \) (where \(F = \mathbb{Q}, \mathbb{R} \) or \(\mathbb{C} \)) be two polynomials with \(g \neq 0 \) and let \(c \in F, \ c \neq 0 \). Prove that
 \[
 \text{quot}(f, cg) = \frac{1}{c} \text{quot}(f, g) \quad \text{and} \quad \text{rem}(f, cg) = \text{rem}(f, g).
 \]

2. Let \(f, g \in F[x] \) (where \(F = \mathbb{Q}, \mathbb{R} \) or \(\mathbb{C} \)) be monic polynomials of the same degree. Prove that \(f | g \) if and only if \(f = g \).

3. Find the remainder when \(x^{1999} + x \) is divided by:
 (a) \(2x + 1 \);
 (b) \(x^2 - 3x + 2 \);
 (c) \(x + \frac{-1+i\sqrt{3}}{2} \);
 (d) \(x^2 + x + 1 \).

4. (a) Use the Euclidean algorithm to find the gcd \(g(x) \) of \(f_1(x) = 4x^4 + x^2 - x - 1 \) and \(f_2(x) = 4x^3 + 4x^2 + x \).
 (b) Use the method of back-substitution to determine polynomials \(a(x) \) and \(b(x) \in \mathbb{Q}[x] \) such that \(af_1 + bf_2 = g \).

5. (a) Prove that \(x^2 - x + 2 \) is irreducible over \(\mathbb{Q} \).
 (b) Prove that \(x^2 - x + 2 \) is NOT irreducible over \(\mathbb{C} \).

6. Let \(f(x) = (x-1)^3(x^2+x-2)^2(x^2+x+1)^3 \) and \(g(x) = (x+2)^3(x^2-3x+2)^3(x^2+x+1)^4 \).
 (a) What are the roots of \(f \) in \(\mathbb{C} \), and the multiplicities of each?
 (b) Find the gcd of \(f \) and \(g \) without using the Euclidean algorithm.

7. Express \(f(x) = x^5 - 1 \) as a product of irreducible factors in \(\mathbb{C}[x] \). (You can leave the coefficients of your answer in terms of sines and cosines, if you want.)