Math 211

For Further Information

Math 211 Home Page

Section   Title
Chapter 0: Introduction
What is Algebra?
Al-Khwarizmi 780-850 (St. Andrew's U.)
Arabic Numerals (St. Andrew's U.)
Indian Numerals (St. Andrew's U.)
Number Systems
Leopold Kronecker 1823-1891 (St. Andrew's U.)

Chapter 1: The Integers
1.1 Introduction
1.2 Divisibility
1.3 The Euclidean Algorithm, First Version
Euclid 325-265 B.C. (St. Andrew's U.)
1.4 The Greatest Common Divisor
1.5 The Division Algorithm
1.6 The Euclidean Algorithm, Second Version
1.7 The Extended Euclidean Algorithm
Indian Mathematics (Overview) (St. Andrew's U.)
1.8 Linear Diophantine Equations
Diophantus 200-284 (St. Andrew's U.)
Pierre Fermat 1601-1665 (St. Andrew's U.)
Plimpton 322 Tablet (St. Andrew's U.)
Fermat's Last Theorem (St. Andrew's U.)
Fermat's Last Theorem (Queen's U.)
1.9 Unique Factorization
Eratosthenes of Cyrene 276-194 B.C. (St. Andrew's U.)
Prime Numbers (St. Andrew's U.)

Chapter 2: Modular Arithmetic
2.1 Introduction
2.2 The Calculus of Remainders
Carl Friederich Gauss 1777-1855 (St. Andrew's U.)
A computer game based on the "Casting-out Nines" rule
2.3 The Cancellation Law
2.4 Solving Congruence Equations
2.5 The Ring Z/mZ and the Field F_p
2.6 The Chinese Remainder Theorem
Indian Mathematics (Overview) (St. Andrew's U.)
2.7 Fermat's Theorem
Pierre Fermat 1601-1665 (St. Andrew's U.)
Father Marin Mersenne 1588-1641 (St. Andrew's U.)
Prime Numbers (and Fermat's Theorem) (St. Andrew's U.)
Blaise Pascal 1623-1665 (St. Andrew's U.)
2.8 Public Key Cryptography
Introduction to Cryptography (PGP)
RSA on the internet

Math 211 Home Page