SOLUTIONS
Given sets $A = \{x, y\}$ and $B = \{0, 1\}$, determine the set $P(A) \times P(B)$, where $P(\cdot)$ denotes the power set.

Solution:

Noting that

\[P(A) = \{\emptyset, \{x\}, \{y\}, A\} \]

and

\[P(B) = \{\emptyset, \{0\}, \{1\}, B\}, \]

we have

\[P(A) \times P(B) = \{(\emptyset, \emptyset), (\emptyset, \{0\}), (\emptyset, \{1\}), (\emptyset, B), (\{x\}, \emptyset), (\{x\}, \{0\}), (\{x\}, \{1\}), \]
\[(\{y\}, \emptyset), (\{y\}, \{0\}), (\{y\}, \{1\}), (\{y\}, B), (A, \emptyset), (A, \{0\}), (A, \{1\}), (B, B)\}. \]
2. Given functions $\alpha : A \to B$ and $\beta : B \to C$ such that $\beta \alpha$ is onto and β is one-to-one, show that α is onto.

Solution:

Let $b \in B$, then $\beta(b) \in C$. Since $\beta \alpha$ is onto, then $\exists a \in A$ such that $\beta(b) = \beta \alpha(a)$. Thus $\beta(b) = \beta(\alpha(a))$ by the definition of composition. The latter implies that $b = \alpha(a)$ since β is $1-1$. We have hence shown that for any $b \in B$, $\exists a \in A$ such that $b = \alpha(a)$; so α is onto. \(\square\)
3. State the definition of an equivalence relation R on a set A and show that for $a, b \in A$, $[a] = [b]$ iff aRb. [6]

Solution:

A relation R from set A to set B is a subset of $A \times B$: $R \subseteq A \times B$. If the sets A and B are equal ($A = B$), then $R \subseteq A \times A$ is called a relation on set A.

Also, a relation R on a set A is said to be an equivalence relation on the set A if it satisfies the following three conditions.

(i) R is reflexive: For every $a \in A$, aRa.

(ii) R is symmetric: If there exist $a, b \in A$ such that aRb, then bRa.

(iii) R is transitive: If there exist $a, b, c \in A$ such that aRb and bRc, then aRc.

We next prove that for $a, b \in A$, $[a] = [b]$ iff aRb.

In order to show the forward direction, we assume that aRb; we aim to show $[a] = [b]$ by double inclusion. Take an arbitrary element $c \in [b]$. Since $c \in [b]$ we have bRc. As aRb, we know aRc by transitivity. Therefore $c \in [a]$. We have shown $[b] \subseteq [a]$. The reverse containment $[a] \subseteq [b]$ holds by symmetry. Thus, $[a] = [b]$.

For the opposite direction, assume that $[a] = [b]$. Since bRb, we have $b \in [b] = [a]$ and hence aRb. Therefore $[a] = [b]$ implies aRb. \square
4. For a function \(f : A \rightarrow A \), let \(f^n = f \cdot f \cdots f : A \rightarrow A \) be the composition of \(f \) with itself \(n \) times. Use induction to prove that, if \(f \) is one-to-one, then \(f^n \) is one-to-one for all integers \(n \geq 1 \).

Solution:

We use induction on \(n \geq 1 \) to show the result.

- **Base case:** For \(n = 1 \), \(f^1 = f \) is one-to-one (by assumption); this proves the base case.

- **Inductive case:** For arbitrary integer \(k \geq 1 \), assume that \(f^k \) is one-to-one. Let us show that \(f^{k+1} \) is one-to-one. For \(a_1, a_2 \in A \), we have

\[
\begin{align*}
f^{k+1}(a_1) = f^{k+1}(a_2) & \implies f(f^k(a_1)) = f(f^k(a_2)) \quad \text{(by composition definition)} \\
& \implies f(a_1) = f(a_2) \quad \text{(since \(f^k \) is one-to-one)} \\
& \implies a_1 = a_2 \quad \text{(since \(f \) is one-to-one)}.
\end{align*}
\]

Thus \(f^{k+1} \) is one-to-one.

Hence, by induction, \(f^n \) is one-to-one for all integers \(n \geq 1 \).
5. Given two relatively prime integers m and n and an integer k such that $n | (mk)$, show that $n | k$. \[6\]

Solution:

Since $gcd(m, n) = 1$, then there exist integers x and y such that

$$xm + yn = 1$$

by Bezout’s identity. Thus

$$xmk + ynk = k.$$

Since $mk = nq$ for some integer q (as $n | (mk)$), then plugging this identity in the above equation yields that

$$x(nq) + ynk = k$$

or equivalently,

$$(xq + yk)n = k.$$

Since $xq + yk$ is an integer, we directly obtain that $n | k$. \[\square\]