Queen’s University
Department of Mathematics and Statistics
MTHE 217 - Algebraic Structures with Applications

Final Exam
December 17, 2016
Dr. F. Alajaji

Student Number: _______________

Directions

• Proctors are unable to respond to queries about the interpretation of exam questions. Do your best to answer exam questions as written.

• This material is copyrighted and is for the sole use of students registered in MTHE 217 and writing this examination. This material shall not be distributed or disseminated. Failure to abide by these conditions is a breach of copyright and may constitute a breach of academic integrity under the University Senate’s Academic Integrity Policy Statement.

• Total points = 60. Duration = 3 hours.

• Closed Book, Closed Notes, No Calculators Permitted.

• Answers should be put in the space provided.

• Be lucid and neat. Justify all your answers.

• Good Luck!

Marks: Please do not write in the space below.

Problem 1 [8] Problem 5 [8]
Problem 2 [8] Problem 6 [8]
Total: [60]
1. Answer the following questions.

(a) Solve the congruence $4x \equiv 3 \pmod{7}$. [4]

(b) Find the remainder when 7^{311} is divided by 5. [4]
2. Let \(a \) and \(b \) be two positive integers, and let \(d = \gcd(a, b) \). Recall that an integer \(l \) is said to be the \textit{least common multiple of} \(a \) and \(b \) – written as \(l = \text{lcm}(a, b) \) – if (i) \(l > 0 \), (ii) \(a \mid l \) and \(b \mid l \), and (iii) for any integer \(n \) such that \(a \mid n \) and \(b \mid n \), we have that \(l \mid n \).

Show that

\[
l = \frac{ab}{d}.
\]
(Problem 2 - Cont’d)
3. Given that $G = \{a, b, c, d, f\}$ is a group, fill its Cayley table given below.

\[
\begin{array}{|c|cccc|}
\hline
& a & b & c & d & f \\
\hline
a & b & & f & & \\
b & c & d & f & & \\
c & d & a & b & & \\
d & & & & & \\
f & & & f & & \\
\hline
\end{array}
\]
(Problem 3 - Cont’d)
4. Answer the following questions.

(a) A group G has subgroups of order 4 and 10 and satisfies $|G| < 50$. What can you conclude about $|G|$? [3]

(b) Assume that G is a group with a subgroup H such that $|G| < 45$, $|H| > 10$ and $|G : H| > 3$, where $|G : H|$ is the index of H in G (i.e., the number of distinct right-cosets of H). Find $|G|$, $|H|$ and $|G : H|$. [3]
(Problem 4 - Cont’d)
5. Consider two cyclic groups $G = \langle g \rangle$ and $H = \langle h \rangle$, where $|g| = m$ and $|h| = n$ such that $gcd(m, n) = 1$. Show that the direct product group $G \times H$ is cyclic.
(Problem 5 - Cont’d)
6. Let

\[\text{SO}(2, \mathbb{R}) = \left\{ \begin{bmatrix} a & -b \\ b & a \end{bmatrix} : a, b \in \mathbb{R}, a^2 + b^2 = 1 \right\} \]

be the special orthogonal set.

(a) Show that \(\text{SO}(2, \mathbb{R}) \) is a subgroup of \(\text{GL}(2, \mathbb{R}) \), the linear group of all \(2 \times 2 \) real-valued matrices with non-zero determinant. [2]

(b) Let \(\phi: \text{SO}(2, \mathbb{R}) \rightarrow \mathbb{C}^* \) be the function given by

\[\phi \left(\begin{bmatrix} a & -b \\ b & a \end{bmatrix} \right) = a + ib, \]

where \(\mathbb{C}^* \) is the group of non-zero complex numbers and \(i \) is the imaginary unit \((i^2 = -1) \).

Show that \(\phi \) is a 1-1 group homomorphism and find its image. [6]
(Problem 6 - Cont’d)
7. Show that the composition of two group isomorphisms is a group isomorphism. [6]
8. Consider a \((6,3)\) binary linear code \(C\) with parity-check matrix

\[
H = \begin{bmatrix}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}.
\]

(a) Find the generator matrix \(G\) of the code \(C\). [1]

(b) List all the code’s possible message words with the corresponding codewords and evaluate the code’s error detection/correction capabilities. [3]

(c) Assume that the following binary stream is received:

\[
011000 \ 111101 \ 010101 \ 110111 \ 101111 \ 001000 \ 000110 \ 000101.
\]

Use syndrome decoding to decode the above stream and find the corresponding decoded binary message. [4]

(d) Assuming that the binary message tuples represent the following letters

\[
000: \text{blank}, \ 001: S, \ 010: 1, \ 011: P, \ 100: 9, \ 101: E, \ 110: L, \ 111: A,
\]

find out the meaning of the message decoded in part (c). [2]
(Problem 8 - Cont’d - i)
(Problem 8 - Cont’d - ii)