16.5

Q19. \text{ Soln:} \\
\text{Eqn of sphere of radius } K \text{ in Cartesian: } x^2 + y^2 + z^2 = K^2 \\
\text{in Cylindrical: } \rho^2 + z^2 = K^2 \\
\text{(Put } x = \rho \cos \theta, \ y = \rho \sin \theta) \\
\text{Using this, volume} \\
\iiint_W \rho \, dV = \iiint_0^2 \rho \, dz \, dr \, d\theta \\
\text{(Note that } \rho \text{ is always } \geq 0) \\
\text{Q20: Example done in class} \\

Q21. \ W \text{ is a solid cone.} \\
\text{In Cartesian co-ord: one familiar cone is given by} \\
z^2 = x^2 + y^2. \\
\text{What does this give in cylindrical co-ord?} \\
\text{We get } z^2 = \rho^2 \text{ i.e. } z = \rho \text{ or } -\rho \text{ depending on whether } z \text{ is } +ve \text{ or } -ve. \\
\text{The equation to expect is some linear dependence between } \rho \text{ and } z. \\
\text{Here, } z = 0 \text{ when } \rho = 0 \text{ (base of the cone)} \\
\text{and } z = 4 \text{ when } \rho = 2 \text{ (top of the cone)} \\
\text{So the equation is } z = 2\rho. \\
\text{As we want } dz \text{ first, let us fix some } \rho, \theta \text{.} \\
\text{Then for this fixed } \rho, \theta, \text{ } z \text{ goes from } 2\rho \text{ to } 4. \\
\text{Done with } z. \\
\rho \text{ goes from } 0 \text{ to } 2 \\
\theta \text{ goes from } 0 \text{ to } 2\pi \text{.}
\[\int_0^{2\pi} \int_0^a \int_{f(r, \theta, z)}^4 \, r \, dz \, dr \, d\theta \]

Q22

Want \[\int_0^4 \int_0^\sqrt{4 - \theta^2} \int_0^\pi g(s, \phi, \theta) \, s^2 \sin \phi \, ds \, d\phi \, d\theta \]

Fix \(\phi \) & \(\theta \).

The top of the cone is \(z = 4 \).

In spherical coordinates, this gives \(s \cos \phi = 4 \).

\[\therefore \text{For fixed } \theta \text{ & } \phi, \]

\(s \) goes from 0 to \(\frac{4}{\cos \phi} \).

To find the range of \(\phi \): consider:

\[\tan \phi = \frac{1}{2} \text{ for any point } (s, \phi, \theta) \text{ on the surface of the cone} \]

\[\therefore \phi \text{ goes from } 0 \text{ to } \tan^{-1} \left(\frac{1}{2} \right) \]

\(\theta \) goes from 0 to \(\pi \).

\& as \(W \) has "radial" symmetry around the origin.

\[\int_0^{2\pi} \int_0^{\tan^{-1}(1/2)} \int_{\cos \phi}^{\pi} g(s, \phi, \theta) \, s^2 \sin \phi \, ds \, d\phi \, d\theta. \]
Q23. As seen in Q21, equation of the cone is
\[z = 2\sqrt{x^2 + y^2} \]
Fix \(x, y \): then \(z \) goes from \(2\sqrt{x^2 + y^2} \) to 4.

on \(xy \) plane:
\[x^2 + y^2 = 4 \]
\[\int_{-2}^{2} \int_{\sqrt{4-x^2}}^{\sqrt{4-x^2}} f(x, y, z) \, dz \, dy \, dx. \]

Q24. a)

One eighth of a sphere:
This is a unit sphere
\[x^2 + y^2 + z^2 = 1 \]
In this \(1/8 \)th, the \(x, y \) co-ord are +ve while \(z \) is negative
\[\iiint_{W} f \, dv = \int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{-\sqrt{1-x^2-y^2}}^{\sqrt{1-x^2-y^2}} f \, dz \, dy \, dx. \]
Now we are done with z. Consider the xy plane. Projection of W into xy plane is a quarter of the circle $x^2 + y^2 = 1$.

Fix a: y goes from 0 to $\sqrt{1-x^2}$

Finally, x goes from 0 to 1

\[
\iiint_W dv = \int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{-\sqrt{1-x^2-y^2}} dz \, dy \, dx
\]

b) Equation of a sphere in cylindrical co-ordinates is $r^2 + z^2 = 1$.

Fix r, θ. Then z goes from $-\sqrt{1-r^2}$ to 0.

For limits on r, θ, consider the projection in the xy plane:

Fix θ. Then r goes from 0 to 1.

Finally, θ goes from 0 to $\pi/2$.

\[
\iiint_W dv = \int_0^1 \int_0^{\pi/2} \int_0^{\sqrt{1-r^2}} r \, dz \, dr \, d\theta
\]

c) Equation of the unit sphere in spherical co-ordinates is $\rho = 1$.

Fix an angle θ with positive x axis & ϕ with positive z axis. Then ρ goes from 0 to 1.

Fix θ. Then ϕ goes from $\pi/2$ to π.

Finally, θ goes from 0 to $\pi/2$.
\[\int dv = \int_0^{\pi/2} \int_0^1 \int_0^1 r^2 \sin \phi \, ds \, dp \, d\phi \]

Q26.

We know that the equation of a cone is of the form
\[z = c \sqrt{x^2 + y^2} \]
for some \(c \in \mathbb{R} \).

In order to find \(c \) for this cone, let's try to find a point on the surface of this cone.

\[\tan \frac{\pi}{4} = \frac{AB}{OA} \]
\[\tan \frac{\pi}{4} = \frac{\sqrt{2}}{OA} \]
\[\therefore AB = OA \quad (\because \tan \frac{\pi}{4} = 1) \]
\[\therefore A \Omega B \text{ has length } \sqrt{2} \]
\[\therefore B = (0, \frac{1}{2}, \frac{1}{2}) \]

Plugging this into \(\text{ii} \), gives
\[\frac{1}{\sqrt{2}} = c \sqrt{\frac{1}{2}} \Rightarrow c = \pm 1 \]

However, as \(z \) is positive for our cone, we must have \(c = 1 \).

\[\therefore \text{Eqn is } x^2 + y^2 = z^2 \text{ or } z = \sqrt{x^2 + y^2} \]

a). Fix \(x \) and \(y \).

Then \(z \) goes from \(\sqrt{x^2 + y^2} \) to \(\frac{1}{\sqrt{2}} \).
Project on xy-plane to get $x^2 + y^2 = \frac{1}{2}$.

The plane $z = \frac{1}{\sqrt{2}}$ intersects the cone
$$z = \sqrt{x^2 + y^2}$$
in
$$\sqrt{x^2 + y^2} = \frac{1}{\sqrt{2}}$$
i.e. $x^2 + y^2 = \frac{1}{2}$.

\[\therefore\text{ when we project the cone on the xy plane, we get the circle } x^2 + y^2 = \frac{1}{2} \text{ of radius } \frac{1}{\sqrt{2}}\]

![Figure 1](image)

Fix α. Then y goes from $-\sqrt{\frac{1}{2} - x^2}$ to $\sqrt{\frac{1}{2} - x^2}$.

Finally x goes from $-\frac{1}{\sqrt{2}}$ to $\frac{1}{\sqrt{2}}$.

\[\therefore \int_{V} \int_{x^2 + y^2 = \frac{1}{2}} dz \, dy \, dx\]

b) Eqn of the cone in cylindrical co-ord is $z = r$.

Fix r, θ. As similar to a), can show that z goes from r to $\frac{1}{\sqrt{2}}$. For the circle of radius $\frac{1}{\sqrt{2}}$ on the xy plane (Figure 1 above), for fixed θ,

r goes from 0 to $\frac{1}{\sqrt{2}}$. Finally θ goes from 0 to π.
We get
\[\int_{\Omega} dv = \int_{0}^{2\pi} \int_{0}^{\frac{1}{\sqrt{2}}} \int_{0}^{\frac{1}{\sqrt{2}}} r \, dr \, dz \, d\theta \]

C) Equation of this cone in spherical co-ord is simply \(\phi = \frac{\pi}{4} \). (Check this.)
Fix some \(\theta \) & \(\phi \).

Eqn of this flat part is \(z = \frac{1}{\sqrt{2}} \)
\[\implies 8 \cos \phi = \frac{1}{\sqrt{2}} \]
Then \(s \) goes from \(0 \) to \(\frac{1}{\sqrt{2}} \cos \phi \).

range of \(\phi \): Clearly \(\phi \) goes from \(0 \) to \(\frac{\pi}{4} \).
range of \(\theta \): \(\theta \) goes from \(0 \) to \(2\pi \).

\[\int_{\Omega} dv = \int_{0}^{2\pi} \int_{0}^{\frac{1}{\sqrt{2}}} \int_{0}^{\frac{1}{\sqrt{2}} \cos \phi} s^2 \sin \phi \, ds \, d\phi \, d\theta \]

\(\phi \leq 0 \) can be done similarly to \(\phi \geq 0 \).

The flat part on top is replaced with part of a sphere.
136 Find: Volume between the cone \(z = \sqrt{x^2+y^2} \) & the plane \(z = 10+x \) above the disk \(x^2+y^2 \leq 1 \).

Sln. we have the following surfaces:

1. \(z = \sqrt{x^2+y^2} \)
2. \(z = 10+x \)

on the disk \(x^2+y^2 \leq 1 \), 1 gives \(z \leq 1 \).

\[
x^2+y^2 = 1 \Rightarrow \frac{x^2}{1} = \frac{y^2}{1} \Rightarrow -1 \leq x \leq 1 & -1 \leq y \leq 1 \\
\text{on the disc}
\]

This can also be seen by etching the disc \(D = x^2+y^2 \leq 1 \)

This means that on the disc \(D \), 2 gives \(z \geq 9 \).

Hence 2 lies above 1 & in the region \(D \).

As 1 is a cone, we try to use cylindrical co-ord.

In cylindrical co-ord,

1. \(z \) is \(z = r \)
2. \(z \) is \(z = 10 + r \cos \theta \)

Fix \(r, \theta \). Then \(z \) goes from \(r \) to \(10 + r \cos \theta \) (remembering that 2 lies above 1 & in our region \(D \)).

Project for \(r, \theta \) we consider the \(xy \) plane.

so we only have to consider the region \(D \).
For \(D \), clearly \(r \) goes from 0 to 1
\(\theta \) " " " 0 to \(2\pi \).

\[
\text{Volume} = \int_{0}^{2\pi} \int_{0}^{1} \int_{r}^{\sqrt{10 + r\cos \theta}} r \, dz \, dr \, d\theta
\]
\[
= \int_{0}^{2\pi} \int_{0}^{1} r \left(10 + r\cos \theta - r \right) \, dr \, d\theta
\]
\[
= \int_{0}^{2\pi} \left(5r^2 + r^3 \cos \theta - \frac{r^3}{3} \right)_{0}^{1} \, d\theta
\]
\[
= 5(2\pi) + \frac{1}{3} \int_{0}^{2\pi} \cos \theta \, d\theta - \frac{1}{3}(2\pi)
\]
\[
= \sin 2\pi - \sin 0
\]
\[
= 0
\]
\[
= (5 - \frac{1}{3})2\pi = \frac{28\pi}{3}
\]

Note
This could also have been done using Cartesian coord. We would have obtained

\[
\text{Volume} = \int_{0}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{1-x^2}^{10+x} dz \, dy \, dx.
\]

However, the integral is hard to evaluate!
Q37.

The cone \(x^2 = \sqrt{y^2+z^2} \) & the sphere \(x^2+y^2+z^2 = 4 \) intersect in:

\[y^2+z^2 + y^2+z^2 = 4 \text{ i.e. } y^2+z^2 = 2 \]

This is a circle of radius \(\sqrt{2} \).

We want to find the shaded volume.

If we rotate everything anticlockwise by \(\frac{\pi}{2} \), then this problem is the same as Q37 of 16.4 & the volume needed is the same as the volume of an ice-cream cone bounded by the hemisphere \(z = x^2+y^2+z^2 = 4 \) & an hemisphere \(z = \sqrt{4-x^2-y^2} \) and the cone \(z = \sqrt{x^2+y^2} \).
We can either do this exactly as Q27 of 16.4 or in a simpler way as follows:

Choose cylindrical co-ordinates.

Fixed volume $\int \int \int W \, r \, dz \, dr \, d\theta$

Fixed r, θ: Then z goes from r to $\sqrt{4-r^2}$

For r, θ: We look at the projection on the xy plane.

This gives the circle $x^2 + y^2 = 2$

Fix θ: r goes from 0 to $\sqrt{2}$

θ goes from 0 to π.

Thus:

$\text{Volume} = \int_0^{2\pi} \int_0^{\sqrt{2}} \int_r^{\sqrt{4-r^2}} r \, dz \, dr \, d\theta$

$= \int_0^{2\pi} \int_0^{\sqrt{2}} \left(\sqrt{4-r^2} - r \right) r \, dr \, d\theta$

$= \int_0^{2\pi} \int_0^{\sqrt{2}} \frac{\sqrt{4-r^2} - r^2}{2} \, dr \, d\theta$

$= \int_0^{2\pi} \left[\frac{1}{2} (4r - r^3) \right]_0^{\sqrt{2}} \, d\theta$

$= \int_0^{2\pi} \left(\frac{2}{2} - \frac{1}{2} \right) \, d\theta$

$= \frac{1}{2} \cdot 2\pi$

$= \pi$
\[= \int_0^{2\pi} \int_0^{\sqrt{4-r^2}} r \, dr \, d\theta = -2\frac{\sqrt{2}}{3} (4\pi) \]

To evaluate \(I = \int_0^{\sqrt{4-r^2}} r \, dr \), we use substitution.

Let \(t = 4 - r^2 \)

Then \(\frac{dt}{dr} = -2r \Rightarrow -\frac{dt}{2} = r \, dr \)

\[\Rightarrow \quad t = 4 - 2 = 2 \]

\[r = \sqrt{2} \Rightarrow t = 4 - 2 = 2 \]

\[\therefore \quad I = \int_2^4 \frac{dt}{2} = \frac{1}{2} \int_2^4 t \, dt = \frac{1}{2} \left[\frac{t^{3/2}}{3/2} \right]_2^4 = \frac{1}{3} \left((2^3 - \frac{2}{3}) \right) \]

\[\therefore \quad \text{Volume} \]

\[= \frac{8\pi}{3} \left(2^3 - \sqrt{2} \right) - \frac{2\pi}{3} \left(2\sqrt{2} \right) \]

\[= \frac{8\pi}{3} \left(2^3 - 4\sqrt{2} \right) = \frac{16\pi}{3} \left(1 - \frac{\sqrt{2}}{2} \right) = \frac{16\pi}{3} \left(1 - \frac{1}{\sqrt{2}} \right) \]

\(\text{Q48. Solution} \)

Equation of the sphere: \(z^2 + r^2 = 5^2 \)

Fix \(r, \theta \): Then \(z \) goes from \(-\sqrt{5^2 - r^2} \) to \(\sqrt{5^2 - r^2} \)

Project on \(xy \)-plane: we get \(R \)

\(r \) goes from 1 to 5

(Instead of 0 to 5.)

\(\theta \) goes from 0 to \(2\pi \).
\[\text{Volume} = \int_0^{2\pi} \int_0^\pi \int_{\sqrt{5}^2 - r^2}^{\sqrt{5}^2 - r^2} r \, dz \, dr \, d\theta \]

Evaluate! Final answer = \(64\sqrt{6} \pi \).

Q54.

a) Density \(S \) is a linear function of radius \(R \).

So \(S = mR + c \) for some \(m, c \in \mathbb{R} \).

At \(R = 7 \), we have \(S = 11 \).

At \(R = 6 \), \(S = 9 \).

\[\begin{align*}
&1. 9 = 11 - 7m + c \quad \text{solve to get} \\
&2. 9 = 6m + c \quad m = 2, \quad c = -3
\end{align*} \]

\[\therefore S = 2R - 3 \]

b) Mass of the shell \(W = \int W \, dV \) (where Mass = density \times volume).

As \(S \) is in terms of \(R \), it makes sense to use spherical co-ordinates.

The shell still has spherical symmetry, so we expect \(\phi, \theta \) to go over their full range.

\(R \) should go only from 6 to 7. (why?)

\[\text{Volume} = \int_0^{2\pi} \int_0^\pi \int_0^7 S(R) \, R^2 \sin \phi \, d\phi \, d\theta \]

\[= \int_0^{2\pi} \int_0^\pi \int_0^7 (2R - 3) \, R^2 \sin \phi \, d\phi \, d\theta \]

Evaluate! Final answer = \(1702\pi \).