Math 232 (Math?)

Intro: What is a differential eq'n?

- Involves derivatives: $\frac{dy}{dx}$

\Rightarrow It is an equation involving derivatives.

Why? We want to build models of phenomena in the world.
We want to see into the future.

We measure rates of change w/ derivatives, and use the resulting "solutions of eqns" to understand future behavior.
\(\frac{dy}{dx} = 0 \)

\(\frac{dy}{dx} + ay = 0 \) where \(a \in \mathbb{R} \)

\(\frac{d^2y}{dx^2} + a \frac{dy}{dx} + b = 0 \) \(a, b \in \mathbb{R} \)

Differential eq'n governs the motion of bodies (e.g. ball thrown in air)

In this case: \(b = \) mass \(a = \) friction

Goal: Come up with a model which describes population growth.

Notation: \(P(t) \) is population as a function of time.
What should this depend on?

We want to write
\[\frac{dP}{dt} = \ldots ? \]

Things which affect this:
- Rate of death
- Existing population.

It is (hopefully) clear that the larger the population, the faster it grows. \[\frac{dP}{dt} \] goes up if \(P \) goes up.

Possibilities:
- \[\frac{dP}{dt} = k_1 P \] \{ increasing functions \}
- \[\frac{dP}{dt} = k_2 P^2 \] \{ \}

- \[\frac{dP}{dt} = 73P^9 + 92P^4 + 873422P^{3/2} + P/2 \]
This satisfies our idea, but it is a bit complicated.

Let's start with the simplest:

$$\frac{dP}{dt} = kP$$

This is our first model. (Yay!)

Next: "Solve" this eq'n.

What do we mean by this?

We want to find a function \(P(t) \) which, when substituted into the given eq'n, actually makes it true.

Guesses:

a) \(P(t) = 0 \)

LHS: \(\frac{dP}{dt} = 0 \) \hspace{1cm} **RHS:** \(k \cdot 0 = 0 \)
b) $P(t) = t$

Check: LHS: $\frac{dP}{dt} = 1$

RHS: $kP(t) = kt$

2) $P(t) = e^{kt}$

Check: LHS: $\frac{dP}{dt} = k e^{kt}$

RHS: $kP = k(e^{kt})$

Population grows exponentially (*

(If $k < 0$ it decreases!)

Claim: this was apparent from

$\frac{dP}{dt} = kP$

(Note: we are assuming $P > 0$)

If $k < 0$ then RHS < 0

Thus $\frac{dP}{dt} < 0$ and so the population decreases.
If \(k > 0 \), population grows exponentially.

One other thing:
Initial population?

we can find a more general solution:

\[
P(t) = Ce^{kt} \quad (\text{check!})
\]

In such a case: \(P(0) = Ce^{k \cdot 0} = C \)
So \(C \) is the initial population.

ex: Find the solution to the following population models:

\(a) \quad \frac{dP}{dt} = 2P \quad P(0) = 3 \)

\[
\text{[initial value problem]}
\]

\text{Ans.} \quad \text{We see that}

\[
P(t) = Ce^{2t}
\]

is a solution.
Turn: \[P(0) = C = 3 \]

So
\[P(t) = 3e^{2t} \]

b) Solve: \[\frac{dP}{dt} = kP \] where

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(0))</td>
<td>3</td>
</tr>
<tr>
<td>(P(1))</td>
<td>6</td>
</tr>
</tbody>
</table>

So by
\[P(t) = Ce^{kt} \]

- \(P(0) = C = 3 \) ---- (1)
- \(P(1) = Ce^k = 6 \) ---- (2)

Thus: (2) becomes
\[3e^k = 6 \]

or
\[e^k = 2 \]

Take \(\ln(\cdot) \) of both sides:
\[k = \ln 2 \]

Thus:
\[P(t) = 3e^{t\ln 2} \]
\[= 3(2^t) \]
Q: What are the flaws of the model?

Read §1.1 up to p. 9
(Limited Resources...)

simon@mast.queensu.ca