Last class: What happens when we can't exactly solve an ODE?

1) Slope fields: These make pretty pictures.

What happens if we want a more quantitative description?

Suppose I want \(y(1000) \) given some ODE

\[
\frac{dy}{dt} = f(t, y) \quad y(0) = y_0
\]

(at least, approximately)?

§1.24 Euler's method:

We can approximate solutions with a sequence of straight lines.
How it works: Given

\[\frac{dy}{dt} = f(t, y) \]

with initial condition \(y(t_0) = y_0 \)

we know that a solution to this would satisfy

\[\frac{dy}{dt} = f(t_0, y_0) \]

Slope is \(f(t_0, y_0) \)

Pick a "step size" \(\Delta t \).

(t_0, y)

If the Function were a straight line:

\[y(t_1) \approx y(t_0) + \frac{dy}{dt}(t_0, y_0) \Delta t \]

i.e. \(y \approx y(t_1) \approx y_0 + f(t_0, y_0) \Delta t \).

We can continue:

\[y_2 = y_1 + f(t_1, y_1) \Delta t \]
Equation: $1 - x^* y$

$y(0) = 1$

$\Delta t = 1$
And so on:

\[y_{i+1} = y_i + f(t_i, y_i) \Delta t \]

where \(t_i = t_0 + i \Delta t \)

This gives us an iterative approximation to a solution of

\[\frac{dy}{dt} = f(t, y) \quad y(t_0) = y_0. \]

Example: \(\frac{dy}{dt} = 2y-1 \quad y(0) = 1 \)

\((t_0, y_0) = (0, 1) \quad \Delta t = 0.1\)

Crank the Euler machine:

\[t_1 = 0 + 0.1 = 0.1 \]

\[y_1 = y_0 + f(0.1, 1)0.1 = 1 + (2(1)-1)0.1 \]

\[= 1.1 \]

\[t_2 = 0.2 \]

\[y_2 = y_1 + f(0.1, 1.1)0.1 = 1.1 + (2(1.1)-1)0.1 \]

\[= 1.22 \]
<table>
<thead>
<tr>
<th>k</th>
<th>t_k</th>
<th>y_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
<td>1.1</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>1.22</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>1.364</td>
</tr>
<tr>
<td>4</td>
<td>0.4</td>
<td>1.537</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>1.744</td>
</tr>
<tr>
<td>6</td>
<td>0.6</td>
<td>1.992</td>
</tr>
<tr>
<td>7</td>
<td>0.7</td>
<td>2.291</td>
</tr>
<tr>
<td>8</td>
<td>0.8</td>
<td>2.650</td>
</tr>
<tr>
<td>9</td>
<td>0.9</td>
<td>3.080</td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
<td>3.596</td>
</tr>
</tbody>
</table>

Thus: $y(1) \approx 3.596$.

So... how close is this?

It turns out: the exact solution to this ODE is

$$y(t) = \frac{e^{2t} - 1}{2}$$

Thus:

$$y(1) = \frac{e^2 - 1}{2} \approx 4.195$$

... not so close.
Why?

Because the solution is concave up, we find that the approx. gets worse and worse.

We would want to choose smaller Δt in order to improve this.

However, this increases the no. of steps...

If we chose $\Delta t = 0.05$

\[y(1) \approx 3.864 \] (better, but not crazy better)

Example 2: \[\frac{dy}{dt} = -2ty^2 \quad y(0) = 1 \]

we want to estimate \(y(2) \) with $\Delta t = 0.5$
we compute
\[t_1 = \frac{1}{2}, \quad y_1 = y_0 + f(t_0, y_0) \frac{1}{2} = 1 + 0 \cdot \frac{1}{2} = 1 \]

<table>
<thead>
<tr>
<th>k</th>
<th>t_k</th>
<th>y_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>\frac{1}{2}</td>
<td>\frac{1}{2}</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>\frac{1}{4}</td>
</tr>
<tr>
<td>3</td>
<td>\frac{3}{2}</td>
<td>\frac{5}{32}</td>
</tr>
</tbody>
</table>

What is the actual answer?

Solve by hand:
\[\frac{dy}{dt} = -2ty^2 \implies \int \frac{dy}{y^2} = \int -2t \, dt + c \]
\[\frac{1}{y} = t^2 + c \]
\[y(t) = \frac{1}{t^2 + c} \]
\[y(0) = \frac{1}{c} = 1 \implies c = 1 \]

Thus the sol'n is \[y(t) = \frac{1}{t^2 + 1} \]
Comparison to approx:

\[y(2) = \frac{1}{2^2 + 1} = \frac{1}{5} \]

How close? \[y(2) - y_4 = \frac{7}{160} \]

If we would have picked a smaller \(\Delta t \) this would have been better!

Note: The given ODE is

\[\frac{dy}{dt} = e^t \sin(y) \]

This has equilibrium solutions when

\[y = \pi, 0, 2\pi, 3\pi, \ldots \]

but the slope gets big!

So we need to not just blindly put numbers into computers, but think about what we are doing.
Firstly: No class on Friday!

HW: \[\begin{align*}
1.3 & \quad 7, 18, 11, 12, 15, 16, 17 \\
1.4 & \quad 1, 2, 7, 8, 13
\end{align*} \]