1. Note that \(\frac{dy}{dt} = 0 \) if and only if \(y = -3 \). Therefore, the constant function \(y(t) = -3 \) for all \(t \) is the only equilibrium solution.

2. Note that \(\frac{dy}{dt} = 0 \) for all \(t \) only if \(y^2 - 2 = 0 \). Therefore, the only equilibrium solutions are \(y(t) = -\sqrt{2} \) for all \(t \) and \(y(t) = +\sqrt{2} \) for all \(t \).

4. (a) The equilibrium solutions correspond to the values of \(P \) for which \(\frac{dP}{dt} = 0 \) for all \(t \). For this equation, \(\frac{dP}{dt} = 0 \) for all \(t \) if \(P = 0 \), \(P = 50 \), or \(P = 200 \).

 (b) The population is increasing if \(\frac{dP}{dt} > 0 \). That is, \(P < 0 \) or \(50 < P < 200 \). Note, \(P < 0 \) might be considered “nonphysical” for a population model.

 (c) The population is decreasing if \(\frac{dP}{dt} < 0 \). That is, \(0 < P < 50 \) or \(P > 200 \).

5. In order to answer the question, we first need to analyze the sign of the polynomial \(y^3 - y^2 - 12y \). Factoring, we obtain

\[
y^3 - y^2 - 12y = y(y^2 - y - 12) = y(y - 4)(y + 3).
\]

(a) The equilibrium solutions correspond to the values of \(y \) for which \(\frac{dy}{dt} = 0 \) for all \(t \). For this equation, \(\frac{dy}{dt} = 0 \) for all \(t \) if \(y = -3 \), \(y = 0 \), or \(y = 4 \).

(b) The solution \(y(t) \) is increasing if \(\frac{dy}{dt} > 0 \). That is, \(-3 < y < 0 \) or \(y > 4 \).

(c) The solution \(y(t) \) is decreasing if \(\frac{dy}{dt} < 0 \). That is, \(y < -3 \) or \(0 < y < 4 \).

6. (a) The rate of change of the amount of radioactive material is \(\frac{dr}{dt} \). This rate is proportional to the amount \(r \) of material present at time \(t \). With \(-\lambda \) as the proportionality constant, we obtain the differential equation

\[
\frac{dr}{dt} = -\lambda r.
\]

Note that the minus sign (along with the assumption that \(\lambda \) is positive) means that the material decays.

(b) The only additional assumption is the initial condition \(r(0) = r_0 \). Consequently, the corresponding initial-value problem is

\[
\frac{dr}{dt} = -\lambda r, \quad r(0) = r_0.
\]
1. \((a)\) Let’s check Bob’s solution first. Since \(dy/dt = 1\) and
\[
\frac{y(t) + 1}{t + 1} = \frac{t + 1}{t + 1} = 1,
\]
Bob’s answer is correct.

Now let’s check Glen’s solution. Since \(dy/dt = 2\) and
\[
\frac{y(t) + 1}{t + 1} = \frac{2t + 2}{t + 1} = 2,
\]
Glen’s solution is also correct.

Finally let’s check Paul’s solution. We have \(dy/dt = 2t\) on one hand and
\[
\frac{y(t) + 1}{t + 1} = \frac{t^2 - 1}{t + 1} = t - 1
\]
on the other. Paul is wrong.

\((b)\) At first glance, they should have seen the equilibrium solution \(y(t) = -1\) for all \(t\) because \(dy/dt = 0\) for any constant function and \(y = -1\) implies that
\[
\frac{y + 1}{t + 1} = 0
\]

independent of \(t\).

Strictly speaking the differential equation is not defined for \(t = -1\), and hence the solutions are not defined for \(t = -1\).

5. \((a)\) This equation is separable. (It is nonlinear and nonautonomous as well.)

\((b)\) We separate variables and integrate to obtain
\[
\int \frac{1}{y^2} \, dy = \int t^2 \, dt
\]
\[\frac{-1}{y} = \frac{t^3}{3} + c\]
\[y(t) = \frac{-1}{(t^3/3) + c},\]
where \(c\) is any real number. This function can also be written in the form
\[y(t) = \frac{-3}{t^3 + k}\]
where \(k\) is any constant. The constant function \(y(t) = 0\) for all \(t\) is also a solution of this equation. It is the equilibrium solution at \(y = 0\).
7. We separate variables and integrate to obtain

\[\int \frac{dy}{2y + 1} = \int dt. \]

We get

\[\frac{1}{2} \ln |2y + 1| = t + c \]

\[|2y + 1| = e^{2t}, \]

where \(c_1 = e^{2c} \). As in Exercise 22, we can drop the absolute value signs by replacing \(\pm c_1 \) with a new constant \(k_1 \). Hence, we have

\[2y + 1 = k_1 e^{2t} \]

\[y = \frac{1}{2} \left(k_1 e^{2t} - 1 \right), \]

and letting \(k = k_1/2 \), \(y(t) = k e^{2t} - 1/2 \). Note that, for \(k = 0 \), we get the equilibrium solution.

10. We separate variables and obtain

\[\int \frac{dx}{1 + x^2} = \int 1 \, dt. \]

Integrating both sides, we get

\[\arctan x = t + c, \]

where \(c \) is a constant. Hence, the general solution is

\[x(t) = \tan(t + c). \]

14. Separating variables and integrating, we obtain

\[\int y^{-1/3} \, dy = \int t \, dt \]

\[\frac{3}{2} y^{2/3} = \frac{t^2}{2} + k \]

\[y^{2/3} = \frac{t^2}{3} + c, \]

where \(c = 2k/3 \). Hence,

\[y(t) = \pm \left(\frac{t^2}{3} + c \right)^{3/2}. \]

Note that this form does not include the equilibrium solution \(y = 0 \).
18. Separating variables and integrating, we have
\[\int (1 + 3y^2) \, dy = \int 4t \, dt \]
\[y + y^3 = 2t^2 + c. \]

To express \(y \) as a function of \(t \), we must solve a cubic. The equation for the roots of a cubic can be found in old algebra books or by asking a computer algebra program. But we do not learn a lot from the result.

19. The equation can be written in the form
\[\frac{dv}{dt} = (v + 1)(t^2 - 2), \]
and we note that \(v(t) = -1 \) for all \(t \) is an equilibrium solution. Separating variables and integrating, we obtain
\[\int \frac{dv}{v + 1} = \int t^2 - 2 \, dt \]
\[\ln |v + 1| = \frac{t^3}{3} - 2t + c, \]
where \(c \) is any constant. Thus,
\[|v + 1| = c_1 e^{-2t + t^3/3}, \]
where \(c_1 = e^c \). We can dispose of the absolute value signs by allowing the constant \(c_1 \) to be any real number. In other words,
\[v(t) = -1 + ke^{-2t + t^3/3}, \]
where \(k = \pm c_1 \). Note that, if \(k = 0 \), we get the equilibrium solution.
25. Separating variables and integrating, we have
\[
\int \frac{1}{x} \, dx = -\int t \, dt
\]
\[
\ln |x| = -\frac{t^2}{2} + c
\]
\[
|x| = k_1 e^{-t^2/2},
\]
where \(k_1 = e^c \). We can eliminate the absolute value signs by allowing the constant \(k_1 \) to be either positive or negative. Thus, the general solution is
\[
x(t) = k e^{-t^2/2}
\]
where \(k = \pm k_1 \). Using the initial condition to solve for \(k \), we have
\[
\frac{1}{\sqrt{\pi}} = x(0) = ke^0 = k.
\]
Therefore,
\[
x(t) = \frac{e^{-t^2/2}}{\sqrt{\pi}}.
\]

27. Separating variables and integrating, we obtain
\[
\int \frac{dy}{y^2} = -\int dt
\]
\[
-\frac{1}{y} = -t + c.
\]
So we get
\[
y = \frac{1}{t - c}.
\]
Now we need to find the constant \(c \) so that \(y(0) = 1/2 \). To do this we solve
\[
\frac{1}{2} = \frac{1}{0 - c}
\]
and get \(c = -2 \). The solution of the initial-value problem is
\[
y(t) = \frac{1}{t + 2}.
\]
32. First we find the general solution by writing the differential equation as

\[\frac{dy}{dt} = (t + 2)y^2, \]

separating variables, and integrating. We have

\[
\int \frac{1}{y^2} \, dy = \int (t + 2) \, dt
\]

\[-\frac{1}{y} = \frac{t^2}{2} + 2t + c
\]

\[= \frac{t^2 + 4t + c_1}{2},\]

where \(c_1 = 2c\). Inverting and multiplying by \(-1\) produces

\[y(t) = \frac{-2}{t^2 + 4t + c_1}. \]

Setting

\[1 = y(0) = \frac{-2}{c_1} \]

and solving for \(c_1\), we obtain \(c_1 = -2\). So

\[y(t) = \frac{-2}{t^2 + 4t - 2}. \]
35. We separate variables to obtain

\[
\int \frac{dy}{1 + y^2} = \int t \, dt
\]

\[
\arctan y = \frac{t^2}{2} + c,
\]

where \(c \) is a constant. Hence the general solution is

\[
y(t) = \tan \left(\frac{t^2}{2} + c \right).
\]

Next we find \(c \) so that \(y(0) = 1 \). Solving

\[
1 = \tan \left(\frac{0^2}{2} + c \right)
\]

yields \(c = \pi/4 \), and the solution to the initial-value problem is

\[
y(t) = \tan \left(\frac{t^2}{2} + \frac{\pi}{4} \right).
\]