1. **Solution I:** The circle of radius \(r > 0 \) going once around \(z_0 \) counterclockwise can be parametrized by \(\gamma_r(t) = r \cdot \exp(it) + z_0 \) with \(t \in [0, 2\pi] \). We then have

\[
\int_{\gamma_r} \frac{1}{z - z_0} \, dz = \int_0^{2\pi} \frac{1}{\gamma_r(t) - z_0} \gamma_r'(t) \, dt = \int_0^{2\pi} \frac{1}{(r \cdot \exp(it) + z_0) - z_0} \cdot (ri \exp(it)) \, dt
\]

\[
= \int_0^{2\pi} \frac{1}{r \cdot \exp(it)} \cdot ri \exp(it) \, dt = \int_0^{2\pi} i \, dt = 2\pi i.
\]

Notice that the answer does not depend on \(r \), which is now something we expect. The function \(\frac{1}{z - z_0} \) is differentiable on \(\mathbb{C} \setminus \{z_0\} \), and for any two real numbers \(r_0 \) and \(r_1 \), \(\gamma_{r_0} \) is homotopic to \(\gamma_{r_1} \) in \(\mathbb{C} \setminus \{z_0\} \), and therefore

\[
\int_{\gamma_{r_0}} \frac{1}{z - z_0} \, dz = \int_{\gamma_{r_1}} \frac{1}{z - z_0} \, dz
\]

by Cauchy’s theorem.

Solution II: Another way to write the previous parameterization is \(\gamma_r(t) = r \cos(t) + ir \sin(t) + z_0 \), again with \(t \in [0, 2\pi] \). Writing the parameterization this way we have

\[
\int_{\gamma_r} \frac{1}{z - z_0} \, dz = \int_0^{2\pi} \frac{1}{\gamma_r(t) - z_0} \gamma_r'(t) \, dt
\]

\[
= \int_0^{2\pi} \frac{1}{(r \cos(t) + ir \sin(t) + z_0) - z_0} \cdot (-r \sin(t) + ir \cos(t)) \, dt
\]

\[
= \int_0^{2\pi} \frac{1}{r \cos(t) + ir \sin(t)} \cdot (-r \sin(t) + ir \cos(t)) \, dt
\]

\[
= \int_0^{2\pi} i(r \cos(t) + ir \sin(t)) \left(\frac{1}{r \cos(t) + ir \sin(t)} \right) \, dt = \int_0^{2\pi} i \, dt = 2\pi i.
\]

1
2. Let \(f(z) = 3|z|^2 \), and \(z = x + iy \), with \(x, y \in \mathbb{R} \).

(a) The curve \(\gamma_1 \) can be parameterized by \(\gamma_1(t) = (x + iy) \cdot t \) with \(t \in [0, 1] \). We then have

\[
\int_{\gamma_1} 3|z|^2 \, dz = \int_0^1 3|\gamma_1(t)|^2 \gamma'_1(t) \, dt = \int_0^1 3t^2(x^2 + y^2) \cdot (x + iy) \, dt
\]

\[
= \int_0^1 3t^2 \left((x^3 + xy^2) + i(x^2y + y^3)\right) \, dt
\]

\[
= t^3 \left((x^3 + xy^2) + i(x^2y + y^3)\right) \Big|_{t=0}^{t=1} = (x^3 + xy^2) + i(x^2y + y^3).
\]

(b) To parameterize the curve \(\gamma_2 \) we parameterize the two pieces separately. The first piece, \(\gamma_{2,1} \) can be parameterized by \(\gamma_{2,1}(t) = xt \), for \(t \in [0, 1] \). This piece of the integral then becomes

\[
\int_{\gamma_{2,1}} 3|z|^2 \, dz = \int_0^1 3|\gamma_{2,1}(t)|^2 \gamma'_{2,1}(t) \, dt = \int_0^1 3t^2x^2 \cdot x \, dt
\]

\[
= \int_0^1 3t^2x^3 \, dt = t^3x^3 \Big|_{t=0}^{t=1} = x^3.
\]

The second leg of the integral can be parameterized by \(\gamma_{2,2}(t) = x + ity \), \(t \in [0, 1] \), and the integral on this piece is

\[
\int_{\gamma_{2,2}} 3|z|^2 \, dz = \int_0^1 3|\gamma_{2,2}(t)|^2 \gamma'_{2,2}(t) \, dt = \int_0^1 3(x^2 + t^2y^2) \cdot iy \, dt
\]

\[
= \int_0^1 3i(x^2y + t^2y^3) \, dt = i(3x^2yt + t^3y^3) \Big|_{t=0}^{t=1} = i(3x^2y + y^3).
\]

Adding the two pieces together we get

\[
\int_{\gamma_2} 3|z|^2 \, dz = \int_{\gamma_{2,1}} 3|z|^2 \, dz + \int_{\gamma_{2,2}} 3|z|^2 \, dz = x^3 + i(3x^2y + y^3).
\]

(c) The function from part (a) is \(F_1(x + iy) = (x^3 + xy^2) + i(x^2y + y^3) \), i.e., the real and imaginary parts of \(F_1 \) are \(u_1(x, y) = x^3 + xy^2 \) and \(v_1(x, y) = x^2y + y^3 \). Both functions are clearly infinitely differentiable as real functions of two variables. To
see if F_1 is (complex) differentiable, we therefore just need to check the Cauchy-Riemann equations.

The only point at which the Cauchy-Riemann equations are satisfied is $(x, y) = (0, 0)$, i.e., F_1 is differentiable only at $(0, 0)$, and is analytic (holomorphic) nowhere.

\[
\begin{align*}
\frac{\partial u_1}{\partial x} &= 3x^2 + y^2 & \frac{\partial u_1}{\partial y} &= 2xy \\
\frac{\partial v_1}{\partial x} &= 2xy & \frac{\partial v_1}{\partial y} &= x^2 + 3y^2
\end{align*}
\]

(d) The function from part (b) is $F_2(x + iy) = x^3 + i(3x^2y + y^3)$, i.e., F_2 has real and imaginary parts $u_2(x, y) = x^3$ and $v_2(x, y) = 3x^2y + y^3$. The Cauchy-Riemann equations are satisfied only when $y = 0$, i.e., F_2 is differentiable only on the real axis, and is analytic (holomorphic) nowhere.

\[
\begin{align*}
\frac{\partial u_2}{\partial x} &= 3x^2 & \frac{\partial u_2}{\partial y} &= 0 \\
\frac{\partial v_2}{\partial x} &= 6xy & \frac{\partial v_2}{\partial y} &= 3x^2 + 3y^2
\end{align*}
\]

Note: In class we proved that a function f has a complex antiderivative on a domain D if and only if path-integrals in D only depend on the endpoints. The proof that path-independence implied the existence of an anti-derivative involved integrating along a path, and then proving that the resulting function was differentiable with derivative f. This question deals with two aspects of that argument. First, since the answers for (a) and (b) are different, the integral of $3|z|^2$ clearly depends on the path (and so by the theorem, $3|z|^2$ has no complex antiderivative). Second, even though we can still construct functions from f by integrating (e.g. F_1 and F_2), these functions are not necessarily complex differentiable. Note that this is a departure from the usual behaviour in real one-variable calculus, where the fundamental theorem of calculus shows that the integral of any continuous function is differentiable.

3. In this problem we use the estimate from class: If γ is any contour, $f(z)$ a function and M a real number such that $|f(z)| \leq M$ for all $z \in \gamma$, then

$$\left| \int_\gamma f(z) \, dz \right| \leq M \cdot \text{length(}\gamma\text{)}.$$
(a) The contour γ is a circle of radius 3 and therefore has length 2π. To establish the estimate we just need to show that $\frac{1}{|z^2 - i|} \leq \frac{1}{8}$ on γ. Here are two equivalent ways to show this:

Geometric: If z is on the circle $|z| = 3$ then z^2 is on the circle of radius $|z|^2 = 9$.

The closest that a point on the circle $|w| = 9$ gets to i is 8, and the farthest that a point on the circle is from i is 10, and this gives the inequalities

$$8 \leq |z^2 - i| \leq 10.$$

Taking the reciprocal yields $\frac{1}{10} \leq \left|\frac{1}{z^2 - i}\right| \leq \frac{1}{8}$.

Triangle Inequalities: By the triangle inequality we have

$$|z^2 - i| \geq |z^2| - |i| = |z|^2 - 1 = 9 - 1 = 8.$$

Taking the reciprocal again gives the inequality $\left|\frac{1}{z^2 - i}\right| \leq \frac{1}{8}$.

Given this bound (by either method) on $\left|\frac{1}{z^2 - i}\right|$ along γ, we obtain the estimate

$$\left|\int_\gamma \frac{dz}{z^2 - i}\right| \leq \frac{1}{8} \cdot 6\pi = \frac{3\pi}{4}.$$

(b) Recall that $\text{Log}(z) = \ln |z| + i \text{Arg}(z)$. In particular, if z is on the unit circle then $\text{Log}(z) = \ln |z| + i \text{Arg}(z) = \ln 1 + i \text{Arg}(z) = i \text{Arg}(z)$, and so $|\text{Log}(z)| = |\text{Arg}(z)|$. By the definition of γ we have $0 \leq \text{Arg}(z) \leq \frac{\pi}{2}$. Since the length of γ is also $\frac{\pi}{2}$, we obtain the estimate

$$\left|\int_\gamma \text{Log}(z)\,dz\right| \leq \frac{\pi}{2} \cdot \frac{\pi}{2} = \frac{\pi^2}{4}.$$

(c) In class we saw that for any complex number w, $|\exp(w)| = e^{\text{Re}(w)}$, and hence $|\exp(\sin(z))| = e^{\text{Re}(\sin(z))}$. By question 4(a) from Homework 4, $\text{Re}(\sin(z)) = \sin(x) \cosh(y)$. The curve γ lies on the imaginary axis, and so $x = 0$ along γ, and in particular

$$|e^{\sin(z)}| = e^{\sin(0) \cosh(y)} = e^0 = 1$$

along γ. Since γ has length 1, this gives the estimate $\left|\int_\gamma e^{\sin(z)}\,dz\right| \leq 1 \cdot 1 = 1$.

4
(d) Put \(\gamma : |z| = 3 \). We have
\[
\left| \int_\gamma \frac{\log(z)}{z - 4i} \right| \leq \frac{|\ln|z|| + |\text{Arg}(z)|}{||z| - 4i||}
\]
so that
\[
\max_{z \in \gamma} \left| \frac{\log(z)}{z - 4i} \right| \leq \frac{\ln(3) + \pi}{|3 - 4|} = \ln(3) + \pi.
\]
Now the length is:
\[
L = (2\pi)3 = 6\pi
\]
so that
\[
\left| \int_\gamma \frac{\log(z)}{z - 4i} \, dz \right| \leq 6\pi(\pi + \ln(3)).
\]

4.

(a) Let \(\gamma \) is the quarter-circle centered at the origin and extending from 2 to \(2i \).
Parametrize \(\gamma \) and compute
\[
\int_\gamma (z^2 - 3|z| + \text{Im}(z)) \, dz.
\]
We put \(\gamma(t) = 2e^{it}, \, 0 \leq t \leq \pi/2 \). Then \(\gamma'(t) = 2ie^{it} \) and
\[
\int_\gamma (z^2 - 3|z| + \text{Im}(z)) \, dz = \int_0^{\pi/2} (4e^{2it} - 6 + 2\sin(t)) \, 2ie^{it} \, dt
\]
\[
= \left[\frac{8}{3}e^{3it} - 12e^{it} + \frac{1}{i}e^{2it} - 2t \right]_0^{\pi/2} = \frac{28}{3} - \pi - \frac{38}{3}i.
\]

(b) Let \(f(z) = z \). Then \(f \) is continuous on a directed smooth curve \(\gamma \). It has an antiderivative \(F(z) = \frac{z^2}{2} \). If \(z = z(t), \, a \leq t \leq b \) is an admissible parametrization of \(\gamma \), then we have
\[
\int_\gamma z \, dz = \int_a^b z(t) \, z'(t) \, dt = \int_\alpha^\beta z(t) \, z'(t) \, dt
\]
\[
= F(\beta) - F(\alpha) = \frac{\beta^2 - \alpha^2}{2}.
\]
Here \(\alpha = \gamma(a) \) and \(\beta = \gamma(b) \).
(c) If γ is a closed contour, by (2) above,
\[\int_{\gamma} z \, dz = 0. \]

(d) The almost the same argument as for (2) above works for $f(z) = z^n$ with $n = 0, 1, 2, \cdots$. Then f is continuous on a directed smooth curve γ. It has an antiderivative $F(z) = \frac{z^{n+1}}{n+1}$. If $z = z(t)$, $a \leq t \leq b$ is an admissible parametrization of γ, then we have
\[\int_{\gamma} z^n \, dz = \int_{a}^{b} z(t)^n \cdot z'(t) \, dt = [F(z)]_{a}^{b} \]
\[= F(b) - F(a) = \frac{\beta^{n+1} - \alpha^{n+1}}{n+1}. \]
But $\gamma(a) = \gamma(b)$ as γ is closed. Hence
\[\int_{\gamma} z^n \, dz = 0 \quad \text{for } n = 0, 1, 2, \cdots. \]

(e) Let γ_1 be the line segment from 1 to $|\alpha|$ along the real axis, and γ_2 be a circular arc centered at the origina and of radius $|\alpha|$ which extends from $|\alpha|$ to α. The union $\gamma_1 + \gamma_2 - \gamma$ forms a closed contour. Since the integrand $1/z$ is analytic everywhere inside D, by the Cauchy integral formula, we have
\[\int_{\gamma} \frac{dz}{z} = \int_{\gamma_1} \frac{dz}{z} + \int_{\gamma_2} \frac{dz}{z}. \]
Now write $\alpha = |\alpha|e^{i\text{Arg}(\alpha)} \text{Arg}(\alpha) \in (-\pi, \pi)$. Then
\[\int_{\gamma_1} \frac{dz}{z} = \int_{1}^{\alpha} \frac{dt}{t} = \ln|\alpha| \]
\[\int_{\gamma_2} \frac{dz}{z} = \int_{0}^{\text{Arg}(\alpha)} \frac{i\cdot e^{i\theta}}{r} \cdot e^{i\theta} \, d\theta = i\text{Arg}(\alpha). \]
Combining the results we have
\[\int_{\gamma} \frac{dz}{z} = \ln|\alpha| + i\text{Arg}(\alpha) = \log(\alpha). \]