1. [1pt each] Describe (and draw) the images of the following sets under the map \(f(z) = e^z = \exp(z) \).

 (a) \(S = \{ z \mid \frac{\pi}{4} \leq \Im(z) \leq \frac{2\pi}{3} \} \)

 (b) \(S = \{ z \mid 1 \leq \Re(z) \leq 2 \} \).

2. [1pt each] Describe (and draw) the images of the following sets under the map \(f(z) = \Log(z) \).

 (a) \(S = \{ z \mid \Re(z) > 0, \Im(z) > 0 \} \)

 (b) \(S = \{ z \mid |z| \geq e \} \).

 Note: In class we introduced the notation \(\Log \) to denote the principal complex logarithm \(\log \), where we take the principal argument \(\Arg \in (-\pi, \pi] \), so that \(\Log \) is single-valued function, and the inverse of the complex exponential \(e^z \).

3. [1pt each] Find all values of

 (a) \((1 - i)^i\),

 (b) \(i^{\frac{3}{4}}\),

 (c) \((\sqrt{3} + i)^{2014}\).

4. [1pt for (a), 2pts each for (b) and (c)]

 For a complex number \(z \neq 0 \), show that \(z^w \) has:

 (a) One value if \(w \) is an integer.

 (b) Exactly \(q \) different values if \(w = p/q \) is a rational number, where \(p \) and \(q \) are integers, \(q > 0 \), and \(\gcd(p, q) = 1 \) (i.e, \(p/q \) is in lowest terms).

 (c) Infinitely many different values if \(w \) is not a rational number.

5. [2pts each]

 (a) Show that the function \(f(t) = e^{it} \), \(0 \leq t \leq 2\pi \), describes the unit circle \(|z| = 1\) traversed in the counterclockwise direction (as \(t \in \mathbb{R} \) increases from 0 to \(2\pi \)).

 (b) Describe the curve \(f(t) = e^{-it} + 1 - i \), \(0 \leq t \leq 2\pi \).

 (c) What kind of object does \(|z + 1| - |z - 1| = \pm 2\) define?

 (d) Let \(f(z) = i\frac{z}{1+z^2} \). What is the set \(\{ \Im(f(z)) = 0 \} \)?