1. [2 pts] Let \(z_0 \in \mathbb{C} \) be a fixed complex number, and for any real number \(r > 0 \) let \(\gamma_r \) be the circle of radius \(r \) around \(z_0 \), oriented counterclockwise. Find \(\int_{\gamma_r} \frac{1}{z - z_0} \, dz \).

2. [2pts each]

For a point \(z = x + iy \in \mathbb{C} \) let \(\gamma_1 \) be the path that goes in a straight line from 0 to \(z \), and let \(\gamma_2 \) be the path that goes from 0 to \(x \), and then to \(z \), as illustrated below.

Let \(f(z) = 3|z|^2 \).

(a) Find \(\int_{\gamma_1} f(z) \, dz \).

(b) Find \(\int_{\gamma_2} f(z) \, dz \).

The answers in (a) and (b) depend on \(z = x + iy \) and so define complex functions \(F_1(z) \) and \(F_2(z) \).

(c) Is the function \(F_1 \) from (a) analytic (holomorphic)?

(d) Is the function \(F_2 \) from (b) analytic (holomorphic)?

3. [2pts each] Show the following estimates for questions (a),(b),(c):

(a) \(\left| \int_{\gamma} \frac{dz}{z^2 - i} \right| \leq \frac{3\pi}{4} \), where \(\gamma = \{ z \in \mathbb{C} \mid |z| = 3 \} \), oriented counterclockwise.

(b) \(\left| \int_{\gamma} \log(z) \, dz \right| \leq \frac{\pi^2}{4} \), where \(\gamma = \{ z \in \mathbb{C} \mid |z| = 1, \ 0 \leq \text{Arg}(z) \leq \frac{\pi}{2} \} \), oriented counterclockwise.

(c) \(\left| \int_{\gamma} \exp(\sin z) \, dz \right| \leq 1 \), where \(\gamma \) is the straight line segment from \(z = 0 \) to \(z = i \).
(d) Estimate an upper bound of \(\left| \int_{|z|=3} \frac{\Log(z)}{z - 4i} \, dz \right| \).

4. [1pt each]
 (a) Let \(\gamma \) is the quarter-circle centered at the origin and extending from 2 to \(2i \). Parametrize \(\gamma \) and compute
 \[
 \int_{\gamma} (z^2 - 3|z| + \Im(z)) \, dz.
 \]

 (b) Let \(\gamma \) be a directed smooth curve with initial point \(\alpha \) and the endpoint \(\beta \). Show that
 \[
 \int_{\gamma} z \, dz = \frac{\beta^2 - \alpha^2}{2}.
 \]

 (c) Suppose that \(\gamma \) is any closed contour. Show that
 \[
 \int_{\gamma} z \, dz = 0.
 \]

 (d) Let \(\gamma \) is a smooth closed contour. Compute
 \[
 \int_{\gamma} z^n \, dz \quad \text{for any} \quad n = 0, 1, \ldots
 \]

 (e) Let \(D = \mathbb{C} \setminus \{(x,0)|x \leq 0\} \). Let \(\gamma \) be a contour lying in \(D \) with the initial point \(1 \) and the terminal point \(\alpha \) where \(\alpha \in D \) is a fixed complex number. Compute
 \[
 \int_{\gamma} \frac{dz}{z}.
 \]