MATH 337

Markov Chains

Course instructor: Dr. Scott Greenhalgh
Email: scott.greenhalgh@queensu.ca
Office: Jeff 516

Course website: http://www.mast.queensu.ca/~math337/index.shtml
Summary

- p_{ij} — transition prob of going from state i to state j in one time step
- f_{ii} — prob of returning to state i given currently in state i
- $f_{ij}^{(n)}$ — prob of going from state i to state j in exactly n steps
- μ_{ij} — Expected ‘first passage’ time from i to j
- π_j — Steady state prob of state j
Ex.

Suppose we have the transition matrix given by:

\[
P = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}
\]

What is the prob of returning to state 0 given that you start at state 0?
Ex.

Suppose we have the transition matrix given by:

\[P = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} \]

What is the prob of moving to state 0 in 3 steps given that you start at state 0?
Ex.

Suppose we have the transition matrix given by:

\[P = \begin{pmatrix}
 a_1 & b_1 \\
 a_2 & b_2
\end{pmatrix} \]

What is the expected first passage time from state 0 to state 1?
Ex.

Suppose we have the transition matrix given by:

\[
P = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}
\]

What is the long-term probability?
Continuous time Markov Chains

Defn summary:

\[P(X(t + s) = i | X(s) = i) = P(X(t) = i | X(0) = i) \]

\[\Updownarrow \]

\[P(T_i > t + s | T_i > s) = P(T_i > t) \]

(with markov prop, and t is indep of s)