MATH 337
Linear Programs

Course instructor: Dr. Scott Greenhalgh
Email: scott.greenhalgh@queensu.ca
Office: Jeff 516

Course website: http://www.mast.queensu.ca/~math337/index.shtml
Project ideas

- Stochastic processes
 - Waiting in line at Tim’s for coffee
 - Elaborate on crosswalk problem
 - Player assist per Mathew’s goal

- Mathematical Programs
 - Supply/demand
 - Medical supply distribution during Ebola outbreak
 - Traffic flow
 - Non-cooperative games

- Theoretical
 - Gradient flows
 - Complementarity systems / Projected DEs
 - Variational Inequalities
Solution techniques: Graphical

Two approaches:

i) Corner points (Extreme points)

ii) Iso-value line(s)
LP in general

An LP in general has either:

1. Unique optimal solution
2. Multiple optimal solutions
3. Is infeasible (no feasible solution)
4. Unbounded
Solution techniques:

Fourier-Motzkin Elimination

Setup: convert to standard form, make new inequality $z \geq obj \ fun$

1) Normalize x_1 in each inequality
2) Eliminate x_1
3) Repeat for x_2, ...
4) Determine smallest z that satisfies inequalities
5) Backwards substitute to find $x_i's$
Ex.

\[\text{min } 2x_1 + 2x_2 + 3x_3 \]
\[\text{s.t. } \]
\[x_1 + x_2 + x_3 \leq 2 \]
\[2x_1 + x_2 \leq 3 \]
\[2x_1 + x_2 + 3x_3 \geq 3 \]
\[x_i \geq 0 \]
The Simplex Algorithm

Setup:
- Start with initial feasible solution
- Right obj function as constraint $z - \text{obj fun} = 0$
- Write LP in canonical form (as a max prob)

Rule 1:
- If all $x_i's$ in z-constraint are non-negative STOP
 - You are at an optimal soln
- Select an x_i in z-constraint with negative coefficient
The Simplex Algorithm

- Select an x_i in z-constraint with negative coefficient

- ‘Pivot’ with this variable to make x_i disappear in other equations
The Simplex Algorithm

Rule 2

- Always pivot in the row that has the smallest ratio of 'entering' variable and RHS value

Repeat until coefficients in z-constraint are non-negative
<table>
<thead>
<tr>
<th></th>
<th>x_{12}</th>
<th>x_{13}</th>
<th>x_{23}</th>
<th>x_{24}</th>
<th>x_{25}</th>
<th>x_{34}</th>
<th>x_{35}</th>
<th>x_{45}</th>
<th>x_{53}</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node 1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Node 2</td>
<td>-1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Node 3</td>
<td></td>
<td>-1</td>
<td>-1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>-1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Node 4</td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
<td>-1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>-5</td>
</tr>
<tr>
<td>Node 5</td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td>-15</td>
</tr>
<tr>
<td>Cap</td>
<td>15</td>
<td>8</td>
<td>∞</td>
<td>4</td>
<td>10</td>
<td>15</td>
<td>5</td>
<td>∞</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Obj fun ($$)</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>(min)</td>
</tr>
</tbody>
</table>