Consider the following matrix:

\[
\begin{pmatrix}
D & E & F \\
A & (9,-4) & (4,-2) & (-2,1) \\
B & (-2,4) & (5,3) & (0,2) \\
C & (5,2) & (2,4) & (1,5)
\end{pmatrix}
\]

Notice that this matrix has no dominant strategies for either player. We can use the theory of mixed strategy Nash equilibria to find a MSNE where each player uses all three of their moves at least some of the time. We begin by finding the expected payoffs for player 1 for moves A, B, and C. Let \(p_D, p_E, p_F\) be the probability player 2 uses move D, E, F, respectively.

\[
\begin{align*}
\pi_1(A, \sigma_2) &= 9p_D + 4p_E - 2p_F \\
\pi_1(B, \sigma_2) &= -2p_D + 5p_E + 0p_F \\
\pi_1(C, \sigma_2) &= 5p_D + 2p_E + 1p_F
\end{align*}
\]

Set \(\pi_1(A, \sigma_2) = \pi_1(C, \sigma_2)\) and \(\pi_1(B, \sigma_2) = \pi_1(C, \sigma_2)\), giving us the two equations:

\[
\begin{align*}
4p_D + 2p_E - 3p_F &= 0 \\
-7p_D + 3p_E - p_F &= 0
\end{align*}
\]

plus the last equation where \(p_D + p_E + p_F = 1\), since the probabilities associated with all of the moves must sum to 1. We now have a 3 by 3 linear system, which can be solved in a variety of ways. Use whichever technique you are most comfortable with, but here is how I would do it, using row reduction:

\[
\begin{pmatrix}
4 & 2 & -3 & | & 0 \\
-7 & 3 & -1 & | & 0 \\
1 & 1 & 1 & | & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
4 & 2 & -3 & | & 0 \\
0 & 26 & -25 & | & 0 \\
0 & -2 & -7 & | & -4
\end{pmatrix}
\rightarrow
\begin{pmatrix}
4 & -2 & 3 & | & 0 \\
0 & 26 & -25 & | & 0 \\
0 & 0 & -116 & | & -52
\end{pmatrix}
\]

If you have forgotten how to row reduce, http://www.math.tamu.edu/~fnarc/psfiles/rowred2012.pdf is not a bad website. From here we can solve for the probabilities: \(p_D = \frac{7}{58}, p_E = \frac{29}{58}, p_F = \frac{13}{29}\).

Now we can use a similar process involving player 2’s expected payoffs. Let \(p_A, p_B, p_C\) be the probability player 2 uses move A, B, C, respectively.

\[
\begin{align*}
\pi_2(\sigma_1, D) &= -4p_A + 4p_B + 2p_C \\
\pi_2(\sigma_1, E) &= -2p_A + 3p_B + 4p_C \\
\pi_2(\sigma_1, F) &= p_A + 2p_B + 5p_C
\end{align*}
\]
Set $\pi_2(\sigma_1, D) = \pi_2(\sigma_1, F)$ and $\pi_2(\sigma_1, E) = \pi_2(\sigma_1, F)$, giving us the two equations:

$$5p_A - 2p_B + 3p_C = 0$$
$$3p_A - p_B + p_C = 0$$

plus the last equation where $p_A + p_B + p_C = 1$, since the probabilities associated with all of the moves must sum to 1. Same deal as last time for the solution:

$\begin{pmatrix} 5 & -2 & 3 & 0 \\ 3 & -1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 5 & -2 & 3 & 0 \\ 0 & -1 & 4 & 0 \\ 0 & -7 & -2 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 5 & -2 & 3 & 0 \\ 0 & -1 & 4 & 0 \\ 0 & 0 & 30 & 5 \end{pmatrix}$

From here we can solve for the probabilities: $p_A = \frac{1}{6}, p_B = \frac{2}{3}, p_C = \frac{1}{6}$.

Therefore our MSNE is $(\sigma_1, \sigma_2) = \left(\frac{1}{6} A + \frac{2}{3} B + \frac{1}{6} C, \frac{7}{58} D + \frac{25}{58} E + \frac{13}{29} F \right)$.

From this point we can calculate the expected payoffs for both players using the mixed strategy profile at the NE.

Calculating Expected Payoff

Basically, we sum the probability of every possible combination multiplied by its payoff. For player 1, this looks like:

$$\pi_1(\sigma_1, \sigma_2) = p_{AD} \pi_1(A, D) + p_{AE} \pi_1(A, E) + p_{AF} \pi_1(A, F) + \cdots + p_{CF} \pi_1(C, F)$$

$$= \left(\frac{1}{6} \right) \left(\frac{7}{58} \right) 9 + \left(\frac{1}{6} \right) \left(\frac{25}{58} \right) 4 + \left(\frac{1}{6} \right) \left(\frac{13}{29} \right) (-2) + \cdots + \left(\frac{1}{6} \right) \left(\frac{13}{29} \right) 1 = 1.913793103$$

For player 2, this looks like:

$$\pi_2(\sigma_1, \sigma_2) = p_{DA} \pi_2(A, D) + p_{DB} \pi_2(B, D) + p_{DC} \pi_2(C, D) + \cdots + p_{CF} \pi_2(C, F)$$

$$= \left(\frac{1}{6} \right) \left(\frac{7}{58} \right) (-4) + \left(\frac{1}{6} \right) \left(\frac{25}{58} \right) 4 + \left(\frac{1}{6} \right) \left(\frac{13}{29} \right) 2 + \cdots + \left(\frac{1}{6} \right) \left(\frac{13}{29} \right) 5 = 2.333333333$$

Since $\pi_1(\sigma_1, \sigma_2) < \pi_2(\sigma_1, \sigma_2)$, we would say this game favours Player 2.