Linear Codes

Let: $F = \mathbb{F}_q$ be a finite field with $q = |F|$ elements.

Definition: A *linear code* of dimension k and length n (briefly: an $[n, k]$-code) over a field F is a subspace $C \subset F^n$ with $\dim_F(C) = k$.

Remark: By definition, a code $C \subset F^n$ is linear \iff $v_1, v_2 \in C, a_1, a_2 \in F \Rightarrow a_1v_1 + a_2v_2 \in C$.

Definition: The *Hamming weight* of $v \in F^n$ is

$$\text{wt}(v) = d(0, v) = \#\{i : x_i \neq 0\}, \text{ if } v = (x_1, \ldots, x_n).$$

Thus, the Hamming distance of $v, w \in F^n$ is

(1) \hspace{1cm} d(v, w) = \text{wt}(v - w).

Proposition 1: If C is a linear code, then

(2) \hspace{1cm} d(C) = \text{wt}(C) := \min\{\text{wt}(v) : v \in C, v \neq 0\}.

Definition: A *generating matrix* of an $[n, k]$-code C is a $k \times n$ matrix G such that

$$C = \text{Rowsp}(G) := \{uG : u \in F^k\}.$$ We say that G is *systematic* if $G = (I_k | P)$.
Remark: By row reduction, every code C is equivalent to a code C' which can be generated by a systematic matrix. (Here, two codes $C, C' \subset F^n$ are called *equivalent* if there exists an $n \times n$ permutation matrix T such that $C' = CT := \{vT : v \in C\}$.)

Definition: A *parity-check matrix* of an $[n, k]$-code C is an $m \times n$-matrix H such that

$$C = \text{Null}(H) := \{v \in F^n : Hv^t = 0\}.$$

Remark: Thus, $n - k = \text{rk}(H) \leq m$, so we usually take $m = n - k$.

Proposition 2: If $G = (I_k | P)$ is a systematic generating matrix of an $[n, k]$-code C, then a parity-check matrix for C is

$$H = (-P^t | I_{n-k}).$$

Theorem 4: If H is a parity-check matrix for C, then

$$d(C) = r^*(H) + 1,$$

where $r^*(H) = \max\{t : \text{every set of } t \text{ columns of } H \text{ is linearly independent}\}$.

Remark: We have $r^*(H) \leq \text{rk}(H) = n - k$, so by (4) we get $k \leq n - d + 1$ (Singleton bound).