Problem 4(a): Converting numbers to binary form

> a := convert(654321, binary);

\(a := 1001111110111110001 \)

(1)

> b := convert(654321, base, 2);

\[b := \{1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1\} \]

(2)

The first command returns the binary expansion of 654321. (Note that this is actually an integer whose decimal expansion has only 0's and 1's.; cf. Maple's help apge on "convert/binary".)

The second command gives the list of binary digits (bits) of the binary expansion of 654321 in reverse order.

Problem 4(b): A program which converts a given integer \(n > 0 \) into its binary form (list of bits).

Input: an integer \(n > 0 \). Output: the list of bits of \(n \) in reverse order (as for the convert(*, base, 2) command).

> bink := proc(n) local ls, q, r;
ls := []; q := n;
while (q \neq 0) do;
 r := irem(q, 2); q := iquo(q, 2);
 ls := [op(ls), r]; od;
return(ls); end;

bink := proc(n)
 local ls, q, r;
 ls := []; q := n;
 while q < 0 do
 r := irem(q, 2); q := iquo(q, 2); ls := [op(ls), r];
 end do;
 return ls
end proc

Testing this for \(n = 654321 \) yields:

> bink(654321);

\[\{1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1\} \]

(4)

By inspection we see that this is the same answer as obtained by the command convert(654321, base, 2).

A better way to check this is by using MAPLE's evalb command:

> evalb(bink(654321) = b);

\text{true}

(5)