Calculating the Order of a Group Element

Question: If \(g \in G \) is an element of a finite group, how fast can we calculate its order \(\text{ord}(g) \)?

Answer: 1) In general, we only have the naive algorithm, i.e. calculate successively \(g, g^2, \ldots g^k, \ldots \) and find the first \(k \) such that \(g^k = 1 \). (Exponential!)

2) However, if we know the prime decomposition of \(n = |G| \), then there is a fast algorithm.

Theorem: Assume that \(n = |G| \) and its set \(S(n) = \{p : p|n, p \text{ prime}\} \) of prime divisors are known. Then \(\text{ord}(g) \) can be computed quickly by using the formula

\[
\text{ord}(g) = \prod_{p \in S(n)} p^{e(p) - f(p)},
\]

where \(e(p) = \max\{k : p^k | n\} \),

\[f(p) = \max\{k \leq e(p) : g^{n/p^k} = 1\} \]

Note: By using the binary power method, \(f(p) \) can be computed in polynomial time, provided that multiplication in \(G \) takes polynomial time. Thus, if \(n \) and \(S(n) \) are known, then \(\text{ord}(g) \) can be calculated in polynomial time.