Review of Time Estimates for Algorithms

Basic operations: Addition, multiplication and division of \(m, n \) take \(O(\log(m) \log(n)) \) bit operations.

Euclidean algorithm: \(\gcd(m, n) : O(\log(m) \log(n)) \)

Arithmetic mod \(m \): Addition, multiplication and inverses/division take \(O(\log^2(m)) \).

Chinese Remainder Theorem: to solve \(x \equiv a \pmod{m} \), \(x \equiv b \pmod{n} \) takes \(O(\log(m) \log(n)) \).

Fast exponentiation (power-mod): computing \(a^n \pmod{m} \) takes \(O(\log(n) \log^2(m)) \).

Extracting square roots mod \(p \): to solve \(x^2 \equiv a \pmod{p} \) takes \(O(\log^4(p)) \) (using (RH)).

Computations in finite fields: Addition, multiplication and inverses/division in \(\mathbb{F}_q \) take \(O(\log^2(q)) \).

Calculating \(\phi(m) = |(\mathbb{Z}/m\mathbb{Z})^\times| \): (Sub)exponential; polynomial if the factorization of \(m \) is known.

Calculating \(\text{ord}(a \pmod{m}) \): Exponential; polynomial if the factorization of \(\phi(m) \) is known.

Finding generators of \(\mathbb{F}_p^\times \): Exponential; the random method works well if \(p-1 \) has few prime factors.