The Division Algorithm

Task: Compute the quotient and the remainder of two integers.

Given: Two positive integers \(a \) amd \(m \).

Find: Two integers \(q \) and \(r \) such that

\[
(1) \quad a = qm + r \quad \text{and} \quad 0 \leq r < m.
\]

Method: (Binary) long division.

Note: The integers \(q \) and \(r \) are uniquely determined by (1) and are called the *quotient* and *remainder* of division of \(a \) by \(m \), respectively. We write:

\[
\text{quo}(a, m) := q \quad \text{and} \quad \text{rem}(a, m) := r.
\]

Analysis: Suppose \(a \) and \(m \) have \(k \) and \(l \) bits, respectively, and that \(k \geq l \). Then:

\[
\#\text{Substractions} = \#\text{bits}(q) \leq k - l + 1 \leq k
\]

\[
\text{Time(Substraction)} = l.
\]

so the time to compute a remainder/quotient is

\[
\text{Time(rem}(a, m)) = (k - l + 1)l \leq kl
\]

\[
\text{Time(quo}(a, m)) = (k - l + 1)l \leq kl
\]
Vista: Much of PK Cryptography is based on *modular arithmetic*, i.e., on the Calculus of remainders. Thus, the efficient computation of remainders is very important for us.

Application: Computing the representation of \(n \) to the base \(b \).
- This can be done a sequence of divisions by \(b \).

Special Case: Computing the binary expansion of \(n \).

Method: Divide successive quotients by \(2 \), list the remainders in reverse order.
- More precisely: put \(q_0 = n \) and compute successively

\[
q_{i+1} = \text{quo}(q_i, 2) \quad \text{and} \quad r_{i+1} = \text{rem}(q_i, 2),
\]

until \(q_k = 0 \). Then \((r_k, \ldots, r_1)_2\) is the binary expansion of \(n \).

Example: \(n = 25 \)

<table>
<thead>
<tr>
<th>(i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_i)</td>
<td>25</td>
<td>12</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(r_i)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Thus, \(25 = (1, 1, 0, 0, 1)_2 \) or \(11001 \).