Design Features of RSA Keys

Basic Task for RSA keys: The user \(A \) has to generate a public key \((n_A, e_A)\) and a private key \(d_A\) such that \(n_A = pq\), where \(p, q\) are primes, and

\[
ed_A A \equiv 1 \pmod{(p - 1)(q - 1)}.
\]

Key Generation: 1) Pick a random number \(p \in [a, b] \) and use a primality test to determine whether \(p \) is prime. If not, repeat until a prime \(p \) has been found. Similarly, determine \(q \) and put \(n_A = pq \).

2) Put \(k = (p - 1)(q - 1) \), and pick a random \(e_A \in [2, k] \). Check that \(\gcd(e_A, k) = 1 \). Solve for \(d_A \) in (1) by using the extended Euclidean algorithm.

Design Rules: 1) \(q \) and \(p - q \) must be large \((p > q)\) \((\rightarrow\) Fermat Factorization\).

2) \(p - 1 \) and \(q - 1 \) should each have a large prime factor \((\rightarrow\) Pollard’s \(p - 1 \) Method\).

3) \(\gcd(p - 1, q - 1) \) should be small.

4) \(d_A \) must be large: \(d_A > n_A^{1/4} \) \(\rightarrow\) continued fraction method).