Lenstra’s Factorization Method

Given: A positive integer n (known to be composite).

Find: A proper factor $d|n$, $1 < d < n$.

Idea: Use Pollard’s $p−1$ method, but replace \mathbb{F}_p^\times by $E(\mathbb{F}_p)$ for a suitable elliptic curve E/\mathbb{Q}.

More precisely: given $P \in E(\mathbb{Q})$, compute kP in $E(\mathbb{Q})$. If there is a j with $1 \leq j \leq k$ such that the denominator of jP is not prime to n, then we get a factor.

Step 0: Check that $(n, 6) = 1$ and that $n \neq m^r$, for any $r \geq 2$. Choose parameters B, C and put

$$k = \prod_{q \leq B} q^{\alpha_q} \quad \text{where } \alpha_q = \left[\frac{\log C}{\log q} \right], \text{ q prime}$$

Step 1: Choose random integers a, x_0, y_0 in $[0, n − 1]$ and put

$$E : y^2 = x^3 + ax + b, \quad P = (x_0, y_0) \text{ with } b = y_0^2 − (x_0^3 + ax_0).$$

Step 2: Check that $g:=\gcd(\Delta_E, n) = 1$, where $\Delta_E = 4a^3 + 27b^2$:

- If $g = 1$, then go to the next step.
- If $g = n$, then repeat step 1 with new values.
- If $g \neq 1, n$, then done: we’ve found a proper factor!

Step 3: Compute $kP(\text{mod } n)$ (see details below):

- If this can be done successfully, go back to step 1.
- Otherwise, we get a proper factor: done!
Step 3 (details): Compute \(k_j P \pmod{n} \), for a suitable sequence \(k_1, \ldots, k_r = k \). (See Methods 1 and 2 below.) Write

\[
P_j = k_j P = \left(\frac{x_j}{z_j}, \frac{y_j}{z_j} \right) \quad \text{in} \quad E(\mathbb{Q}),
\]

where \(\gcd(x_j, y_j, z_j) = 1 \). If

\[
d_j := \gcd(z_j, n) = 1,
\]

then there exist \(x_j \equiv \frac{x_j}{z_j} \pmod{n} \) and \(y_j \equiv \frac{y_j}{z_j} \pmod{n} \), and so

\[
\overline{P}_j = (\overline{x}_j, \overline{y}_j) \equiv k_j P \pmod{n}
\]

can be computed directly from \(\overline{P}_{j-1} \). Otherwise:
- either \(d_j = n \): then go back to step 1;
- or \(d_j \neq 1, n \): then we have a proper divisor: done!

Method 1 (for choosing the \(k_j \)'s): Binary power method (cf. Silverman/Tate): Write

\[
k = 2^r + 2^{r-1}c_1 + \ldots + 2c_{r-1} + c_r, \quad \text{with} \quad c_i \in 0, 1
\]

and put \(k_0 = 1, \; k_j = 2k_{j-1} + c_j \).

Method 2: Use the factorization of \(k \) (cf. Koblitz):

Let \(q_1 = 2, q_2 = 3, \ldots, q_r \) denote the primes \(\leq B \) and put \(k_0 = 1 \) and

\[
k_{j+1} = q_i k_j \quad \text{for} \quad A_{i-1} \leq j < A_i, \; 1 \leq i \leq r,
\]

where \(A_0 = 1, \; A_i = \alpha_{q_1} \cdots \alpha_{q_i} \). Thus we get the sequence:

\[
1, 2, 2^2, \ldots, 2^{\alpha_2}, 3(2^{\alpha_2}), 3^2(2^{\alpha_2}) \ldots, 3^{\alpha_3}2^{\alpha_2}, \ldots, k.
\]