The Goldwasser/Kilian Elliptic Curve Primality Test

Given: A positive integer \(n \) (known to be “probably prime”).

Aim: Prove that \(n \) is prime, or else find a proper factor \(d|n \).

Idea: Analogue of Pocklington’s Primality Test.

Procedure:

Step 1: Select random integers \(a, x_0, y_0 \) (mod \(n \)) and put
\[
E : y^2 = x^3 + ax + b, \quad P = (x_0, y_0) \text{ with } b = y_0^2 - (x_0^3 + ax_0).
\]

Step 2: Check that \(g:=\gcd(\Delta_E, n) = 1 \), where \(\Delta_E = 4a^3 + 27b^2 \):
- If \(g = 1 \), then go to the next step.
- If \(g = n \), then repeat step 1 with new values.
- If \(g \neq 1, n \), then done: we’ve found a proper factor!

Step 3: Pretend that \(n \) is prime and use the Schoof Algorithm to compute \(m = \#E(\mathbb{F}_n) \).

Note: If Schoof’s algorithm breaks down, then we can easily find a factor of \(n \); then done.

Step 4: If we cannot write \(m = kq \), where \(k \geq 2 \) is small and \(q \) is “probably prime” (by a suitable primality test), then start over with step 1.

Step 5: Thus \(m = kq \) with \(k \) small and \(q \) (probably) prime, \(q > (n^{1/4} + 1) \). Compute \(mP \) and \(kP \).
- If \(mP \neq \mathcal{O}(= P_\infty) \), then \(n \) is composite (by Lagrange).
- If \(kP = \mathcal{O} \), then start over with step 1.
Step 6: Thus $m = kq$, $mP = \emptyset$ and $kP \neq \mathcal{P}$. By the Proposition, we can conclude that n is prime provided we know that q is prime.

For this: restart the algorithm for $q = q_1$ in place of n. We then get a new $m = k_2q_2$, where k_2 is small and q_2 is probably prime. Restart with q_2, etc.

Note that since $q_{i+1} \leq \frac{q_i - 1}{2}$, we have at most $t = \log_2 n$ such (probable) primes $q_1 = q, \ldots, q_t$ to consider, and that if any q_i is proven to be prime, then the Proposition guarantees that $q_{i-1}, \ldots, q_1 = q$ and hence also n are all prime.