A Factorization Algorithm Using Continued Fractions

Aim: Find a proper factor of the odd integer n (known to be composite).

Step 0: (Initialization) Put $b_{-1} = 1, b_0 = a_0 := [\sqrt{n}], x_0 = \sqrt{n} - a_0$ and fix a bound L.

Step 1: For $i = 1, \ldots, L$ compute

$$a_i = [1/x_i], \quad x_i = 1/x_{i-1} - a_i, \quad b_i \equiv a_ib_i + b_{i-2} \pmod{n}.$$

Step 2: Compute and factor $m_i := \text{mods}(b_i^2, n)$, for $1 \leq i \leq L$.

Step 3: Let $B = \{-1, p_2, \ldots, p_{h-1}\}$, where the p_i’s are all the primes which occur more than once the m_k’s; i.e. either p_i occurs in two different m_k’s or to an even power in one m_k.

Step 4: List all the m_i’s which are B-numbers, together with the B-vectors $[m_i] \in \mathbb{F}_2^h$ and find relations among these vectors.

Step 5: If there are no relations, increase L and redo steps 1 – 4. Otherwise, for each relation $\sum \varepsilon_i[m_i] = \vec{0}$ in \mathbb{F}_2^h, determine:

$$c := \sqrt{\prod m_i^{\varepsilon_i}} \in \mathbb{Z} \quad \text{and} \quad b := \prod b_i^{\varepsilon_i} \pmod{n}.$$

Check that $b \not\equiv \pm c \pmod{n}$. (Note that $b^2 \equiv c^2 \pmod{n}$.)

Step 6: If $b \equiv \pm c \pmod{n}$ for all relations, then increase L and go back to step 1.

Otherwise we have $b \not\equiv \pm c \pmod{n}$ and $b^2 \equiv c^2 \pmod{n}$ for some b, c and then $d = \gcd(b + c, n)$ is a proper factor.