Euler Pseudoprimes and the Euler Test

Recall: Euler’s Theorem:

\[n \text{ prime} \Rightarrow b^{\frac{n-1}{2}} \equiv \left(\frac{b}{n} \right) \pmod{n}, \forall b, \gcd(b, n) = 1. \]

Here \(\left(\frac{b}{n} \right) \) denotes the Legendre/Jacobi symbol.

Definition: If \(n \) is an odd composite number (i.e., \(n \) is odd, not prime) and if \(\gcd(b, n) = 1 \), then \(n \) called an Euler pseudoprime to the base \(b \) (\(\text{Epsp}_b \)) if

\[(1) \quad b^{\frac{n-1}{2}} \equiv \left(\frac{b}{n} \right) \pmod{n}. \]

Euler Test: Given an odd integer \(n \), test for a random \(b \) whether (1) holds, i.e., whether \(n \) is an \(\text{Epsp}_b \).

Note: The name “Euler pseudoprime” is due to D. Shanks (1978).

Notation: Let \(\mathcal{E}_n \) denote the set of all bases \(b \in (\mathbb{Z}/n\mathbb{Z})^\times \) such that \(n \) is an Euler pseudoprime to the base \(b \). Thus:

\[\mathcal{E}_n = \{ b \in (\mathbb{Z}/n\mathbb{Z})^\times : n \text{ is an } \text{Epsp}_b \} \subset (\mathbb{Z}/n\mathbb{Z})^\times. \]
Theorem 6: (a) If \(n \) is an \(E_{p_{sp_b}} \), then \(n \) is a \(p_{sp_b} \). Thus \(\mathcal{E}_n \subset \mathcal{P}_n \).
(b) \(\mathcal{E}_n \) is a subgroup of \((\mathbb{Z}/n\mathbb{Z})^\times \).
(c) If \(n \) is odd and composite, then \(\mathcal{E}_n \leq \frac{1}{2} \phi(n) \).

Remark: The proof of part (c) uses:

Theorem 7: Every Carmichael number is square-free.

Test 2 (Solovay-Strassen Primality Test, 1977):
Given: an odd positive integer \(n \)
Method: Repeat the following steps \(k \) times, as long as \(n \) passes each of the steps:
1) Choose an integer \(b \) with \(1 < b < n \) at random.
2) Check whether \(\gcd(b, n) = 1 \). If false, stop: \(n \) has failed the test. Otherwise, continue with step 3.
3) Compute both sides of (1). If they are equal in \(\mathbb{Z}/n\mathbb{Z} \), then \(n \) has passed the test, otherwise \(n \) has failed the test.

Result: If \(n \) passes \(k \) tests, then
\[
\text{Prob}(n \text{ is composite}) \leq \frac{1}{2^k}.
\]

Note: Each pass of the Euler test takes \(O(\log^3(n)) \) bit operations.