Strong Pseudoprimes and the Miller-Rabin Test

Definition: Let \(n \) be an odd composite number and write \(n - 1 = 2^\alpha s \), with \(s \) odd. If \(\gcd(b, n) = 1 \), then \(n \) called an \textit{strong pseudoprime to the base} \(b \) (\(spsp_b \)) if one of the following conditions holds:

1. \(b^s \equiv 1 \pmod{n} \)
2. \(b^{2^r s} \equiv -1 \pmod{n} \), for some \(r, 0 \leq r < \alpha \).

Miller-Rabin Test: Given an odd integer \(n \), test for a random \(b \) whether condition (1) or (2) holds.

Notation: Let \(S_n \) denote the set of all bases \(b \in (\mathbb{Z}/n\mathbb{Z})^\times \) such that \(b \) satisfies condition (1) or (2) with respect to \(n \), i.e., \(n \) is a \(spsp_b \). Thus:

\[
S_n = \{b \in (\mathbb{Z}/n\mathbb{Z})^\times : n \text{ is an spsp}_b\} \subset (\mathbb{Z}/n\mathbb{Z})^\times.
\]

Theorem 8: (a) If \(n \) is a \(spsp_b \), then \(n \) is an \(Esps_b \). Thus \(S_n \subset E_n \subset P_n \).
(b) If \(n \equiv 3 \pmod{4} \), then \(S_n = E_n \).
(c) If \(n \) is a prime, then \(S_n = (\mathbb{Z}/n\mathbb{Z})^\times \).
(d) If \(n \) is odd and composite, then \(|S_n| \leq \frac{1}{4}(n-1) \).

Remark: In general, \(S_n \) is not a subgroup of \((\mathbb{Z}/n\mathbb{Z})^\times \).