Digital Signature (ECDSA)

Purpose: To sign a given message m.

System parameters: E/\mathbb{F}_p, $P \in E(\mathbb{F}_p)$, $q = \text{ord}(P)$.
Note: p and q are primes of similar size: $q \approx p$.

Key Generation: A chooses x_A with $1 < x_A < q$.
A’s Public Key is $Q_A := x_A P$. (x_A is secret.)

Protocol for A to sign the message m:
1) Select a random integer k with $1 < k < q$.
2) Compute $kP = (x_1, y_1)$ and $r = \text{rem}(x_1, q)$.
 (If $r = 0$, return to step 1 and choose a new k.)
3) Compute $s = \text{rem}((H(m) + x_A r)/k, q)$, where $H(m)$ is the hash value of m. ($s = 0 \rightarrow$ step 1.)
4) The signature is the pair (r, s).

Verification of the signature (by B):
1) Obtain an authenticated copy of Q_A.
2) Check that $1 < r, s < q$. Let $m' = \text{received message}$.
3) Compute $w = \text{rem}(1/s, q)$ and $H(m')$.
4) Compute $u_1 = \text{rem}(H(m')w, q)$, $u_2 = \text{rem}(rw, q)$.
5) Compute $u_1 P + u_2 Q_A = (x_0, y_0)$, $v = \text{rem}(x_0, q)$.
6) Accept the signature if and only if $v = r$.