Math 418/818

Assignment 7

Due 12 November 2015

[6] 1. Let \(n = pq \) be a product of two distinct odd primes and put \(d = \gcd(p - 1, q - 1) \).
 (a) Prove that \(n \) is a pseudoprime to the base \(b \) if and only if \(b^d \equiv 1 \pmod{n} \).
 (b) Conclude (using part (a)) that \(|\mathcal{P}_n| = d^2 \).
 [2*] (c) Prove that if \(n > 0 \) is any odd integer, then \(b \in \mathcal{E}_n \) if and only if \(-b \in \mathcal{E}_n \).

[5] 2. (a) Let \(p = 467 \). Which of the three numbers 111, 127, and 225 are squares in \(\mathbb{F}_p \)?
 Justify your answer. (Do not use the prime factorization your numbers.)
 (b) For which primes \(p \) is 7 a quadratic residue mod \(p \)? (Give your answer in terms of a list of congruence conditions on \(p \).)

[3] 3. (a) Let \(m \) be a squarefree odd integer, and let \((a, m) = 1 \). Show that \(x^2 \equiv a \pmod{m} \)
 has a solution if and only if \(\left(\frac{a}{p} \right) = 1 \), for all primes \(p | m \).
 [3*] (b)* Extend part (a) to all odd integers \(m \).

 (a) Write a MAPLE program \texttt{encode(m, g, y, p)} to encode a given message \(m \)
 (with \(0 < m < p \)) by using the ElGamal protocol. Here, \(p \) is a prime, \(g \) an integer
 with \(0 < g < p \) and \(y(=g^x) \) the public key. (Use MAPLE’s built-in random number
 generator in the range \(2 \ldots p - 2 \).)
 (b) Write a MAPLE program \texttt{decode(M, g, y, p)} which decodes an encrypted message \(M \)
 produced by the program \texttt{encode} of part (a). (Use MAPLE’s built-in discrete
 log program (\texttt{numtheory[mlog]}) to find the secret key \(x \).)
 (c) Test your programs of parts (a) and (b) by encrypting and decrypting the message
 \(m = 20080919 \) \textit{twice}, using the public key \((g, y, p) = (2222, 35029140, 112233449) \).