1. Let \(t_0, t_1 \in \mathbb{R} \) with \(t_0 < t_1 \). Recall that \(\mathcal{F}([t_0,t_1];\mathbb{R}^m) \) (equipped with the usual operations of additions of functions and multiplication by a scalar) denotes the \(\mathbb{R} \)–vector space of \(\mathbb{R}^m \)–valued functions on \([t_0,t_1] \), and that \(\mathcal{C}^0_0([t_0,t_1];\mathbb{R}^m) \) denotes the set of \(\mathbb{R}^m \)–valued piecewise-continuous functions on \([t_0,t_1] \) (as defined in class).

(i) Show that \(\mathcal{C}^0_0([t_0,t_1];\mathbb{R}^m) \) is a vector subspace of the \(\mathbb{R} \)–vector space \(\mathcal{F}([t_0,t_1];\mathbb{R}^m) \) (and hence is itself a \(\mathbb{R} \)–vector space, with the vector space operations inherited from \(\mathcal{F}([t_0,t_1];\mathbb{R}^m) \)).

(ii) Show that the \(\mathbb{R} \)–vector space \(\mathcal{C}^0_0([t_0,t_1];\mathbb{R}^m) \) is infinite-dimensional.

2. In this problem, we will prove a linear algebra result that we used in our study of controllability for linear time-varying systems.

(a) Let \(V \) be a real vector space with inner product \(\langle \cdot, \cdot \rangle \). Let \(L : V \to V \) be a (continuous) linear mapping, and assume it is symmetric, i.e. \(\forall u,v \in V : \langle Lu,v \rangle = \langle u,Lv \rangle \). Show that we then have \(\text{Im}(L) \perp \text{Ker}(L) \), where \(\perp \) denotes orthogonality with respect to the inner product \(\langle \cdot, \cdot \rangle \).

(b) Continuing (a), show that if \(V \) is additionally finite-dimensional, then \(V = \text{Im}(L) \oplus \text{Ker}(L) \).

(c) Construct a real \(2 \times 2 \) matrix \(M \) and a vector \(x_1 \in \mathbb{R}^2 \) such that \(x_1 \notin \text{Im}(M) \) and such that \(\forall x_2 \in \text{Ker}(L) \) we have \(x_2^T x_1 = 0 \). (Note that \(M \) must necessarily be non-symmetric. This shows that in our study of controllability, symmetry of the controllability gramian \(W(t_0,t_1) \) played an essential role.)

3. Consider the Linear Time Varying system given by

\[
\dot{x}(t) = A(t)x(t) + B(t)u(t), \quad t \in J,
\]

where \(J \subset \mathbb{R} \) is some interval of \(\mathbb{R} \), and \(A, B \) are continuous on \(J \). Recall the controllability Gramian \(W \) of this system, defined for the pair \((t_0,t_1)\) (where \(t_0, t_1 \in J, \ t_1 > t_0 \)) by:

\[
W(t_0,t_1) = \int_{t_0}^{t_1} \Phi(t_0,\tau)B(\tau)B^T(\tau)\Phi^T(t_0,\tau)d\tau.
\]

Using the algebraic matrix equation satisfied by the controllability Gramian, show that if for some \(t_0, t_1 \in J \) with \(t_0 < t_1 \) and for each \(x_0, x_1 \in \mathbb{R}^n \), there exists a continuous control on \([t_0,t_1]\) that steers the system from \(x_0 \) at \(t_0 \) to \(x_1 \) at \(t_1 \), then for each \(t_2 \in J \) with \(t_2 > t_1 \) and for each \(x_0, x_2 \in \mathbb{R}^n \), there exists a continuous control on \([t_0,t_2]\) that steers the system from \(x_0 \) at \(t_0 \) to \(x_2 \) at \(t_2 \).
4. Consider the linear time-invariant control system given by \(\dot{x}(t) = g(t) (Ax(t) + Bu(t)), \) \(t \in \mathbb{R}, \) where \(x(t) \in \mathbb{R}^n \) and \(u(t) \in \mathbb{R}^m \) for all \(t \in \mathbb{R}. \) \(A \) is an \(n \times n \) real matrix, and \(B \) an \(n \times m \) real matrix. Assume also that \(g \) is continuous on \(\mathbb{R} \) and that there exist \(\alpha, \beta > 0 \) such that \(\forall t \in \mathbb{R}, 0 < \alpha \leq g(t) \leq \beta < \infty. \) Show that if \(\text{rank} [B AB \cdots A^{n-1}B] = n, \) then given any \(T > 0 \) and any \(x_0, x_1 \in \mathbb{R}^n, \) there exists a continuous control \(u \) which transfers \(x \) from \(x_0 \) at \(t = 0 \) to \(x_1 \) at \(t = T. \) (Hint: consider a change of time scale as follows: \(\forall t \geq 0, \) let \(h(t) = \int_0^t g(\sigma) d\sigma; \) show that \(h^{-1} \) is defined and \(C^1 \) on \(\mathbb{R}^+, \) and define, \(\forall t \in \mathbb{R}^+, z(t) = x(h^{-1}(t)); \) compute \(\frac{d}{dt} z(t) \) and note the simplification obtained ...).

5. Let \(A \) and \(F \) be constant \(n \times n \) matrices. Let \(b \in \mathbb{R}^n \) and let \(G = A - F. \) Show that it is possible to drive the state \(x \) of the system

\[
\dot{x}(t) = e^{Ft}Ae^{-Ft}x(t) + e^{Ft}bu(t)
\]

from any state at \(t = 0 \) to \(0 \) at \(t = 1 \) using a continuous control \(u : [0, 1] \to \mathbb{R} \) if and only if \(\det[b \ Gb \ G^2b \cdots G^{n-1}b] \neq 0. \)