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New lower bounds are presented for the minimum error probability
that can be achieved through the use of block coding on noisy discrete
memoryless channels. Like previous upper bounds, these lower
bounds decrease exponentially with the block length N. The co-
efficient of NV in the exponent is a convex function of the rate. From a
certain rate of transmission up to channel capacity, the exponents of
the upper and lower bounds coincide. Below this particular rate, the
exponents of the upper and lower bounds differ, although they ap-
proach the same limit as the rate approaches zero. Examples are given
and various incidental results and techniques relating to eoding
theory are developed. The paper is presented in two parts: the first,
appearing in the January issue, summarizes the major results and
treats the case of high transmission rates in detail; the second, ap-
pearing here, treats the case of low transmission rates.

1. ZERO RATE EXPONENTS

In this section we shall investigate the error probability for codes whose
block length is much larger than the number of codewords, N > M. We
assume throughout this section that the zero error capacity of the chan-
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nel, Cy, is zero. We also assume that ordinary decoding is to be used
rather than list decoding, i.e., that the list size L is one.

Our basic technique will be to bound the error probability for a given
set of code words in terms of the error probability between any pair of
the words, say 2, and 2, . We can apply the corollary to Theorem I-5,
given by (I-3.20) and (I-3.21), as follows." Let Pi(y) and Py(y) in
Theorem I-5 correspond to Pr (y|z») and Pr (y|zn ) here, and let ¥,
and Y, in Theorem I-5 correspond to the decoding regions Y, and Y,
for the given decoding scheme here. The fact that some output sequences
are decoded into messages other than m or m’ in no way effects the
validity of Theorem 5 or its corollary. From (1-3.20) and (I1-3.21), the
error probabilities P, and P, for the given decoding scheme are
bounded by either

Pom Z Yexplu(s) — s /2" (%) (1.01)
or
Pow Z Fexp[u(s™) £ (1 — &) V2" (59, (1.02)
where
w(s) = In 2. Pr(y|en)™ Pry|zm)’ (1.03)

and s* minimizes u(s) over 0 < s < 1.

This result can be put into a more convenient form with theaid of the
following definitions.

The joint composition of L, and Zm: , ¢ix(m, m’) is the fraction of the
positions in the block in which the ith channel input oceurs in codeword
Zr and the kth channel input oceurs in Zm .

The function u;(s) is defined for 0 < s < 1 by

uia(s) = In 20 P(j|0) P3| k)" (1.04)
M
As before,
pis(0) = Iim pip(s)
s=0t
and

wix(l) = h?_l wig(8).

! References to equations, sections and theorems of the first part of this paper
will be prefixed by I.



524 SHANNON, GALLAGER, AND BERLEKAMP

Using (I-3.10), u(s) in (1.03) can be expressed in terms of these defi-
nitions by

u(s) = N Z kZ qi(m, m Vi s(s). (1.05)

The discrepancy between z,, and ... , D(m, m'), is defined by
D(m,m’) £ — min D> 2 giu(m, m )pes(s). (1.06)

0<s<l ¢ k

Tt can be seen that the quantity u(s™) appearing in (1.01) and (1.02) is
given by —ND(m, m'). The discrepancy plays a role similar to that of
the conventional Hamming distance for binary symmetric channels.

The minimum discrepancy for a code Dy, is the minimum value of
D(m, m) over all pairs of code words of a particular code.

The mazimum minimum discrepancy, Dwin(N, M) is the maximum
value of Dpin over all codes containing M code words of block-length N.

TuaroreMm 1. If £.. and g, are a pair of code words in a code of block-
length N, then either

Pon = iexp ~N| D(m, m') + 7\271n (I/Pmin):l (1.07)

or

RW%WHNMWW+V%MWW](W)

where Puia 15 the smallest nonzero transition probability for the channel.
Proof. We shall show that u”(s) is bounded by

w'(s) £ N[ln Pl ]2. (1.09)

min

Then the theorem will follow from (1.01) and (1.02) by upper bounding
s* and (1 — s*) by 1. To establish (1.09), we use (1-3.25), obtaining

7 . P(] l k)]2 I4 2
; = s 1 e | , 1.10
W) = L) [m BT Wl o, o)
where Q,(j) is a probability assignment over the outputs for which
P(j|k) and P(j|¢) are nonzero. Observing that

IIn P(j [ £)/P(]9)] £ In (1/Puin),

we can ignore the last term in (1.10), getting
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wik(s) = ; Q(Nn (1/Pain)l’ = [In (1/Puia)™. (1.11)

Combining (1.11) with (1.05), we have (1.09), completing the proof.

Since the probability of error for the entire code of M code words is
lower bounded by P, 2 P.../M for any m, it follows from the theorem
that

1 2. 1
> o - . Zln ——
P,z 7 &P N I:Dmm + 4/N In Pm-m:l' (1.12)

Conversely, we now show that there exist decoding regions such that
Pom = (M — 1) exp ~NDypi, forall m. (1.13)

These regions may be chosen as follows: From Theorem I-5, there
exist decoding regions Y,.(m, m’) and V,.(m, m') for the code containing
only the codewords m and m’ such that both P, , and P, . are no greater
than exp —NDpin . To decode the larger code, set Vo, = Ny You(m, m').
Since the sets Y, are not overlapping, they are legitimate decoding sets.
Also, VX = U, V.. %(m, m), and since the probability of a union of
events cannot exceed the sum of their probabilities, we have

Pom= 2 Priyla.) = 2 2 )Pr (ylza) (1.14)

YEY € m'#Em g€ ¥t (mm’

lIA

(M — 1) exp — NDyy,. (1.15)

Combining (1.12) and (1.15) yields the first part of the following
theorem:
TarOREM 2. Let F i be defined by

lim sup — —In Po(N, M, 1).
N-ro0 N
Then
Ey = lim sup Dy, (N, M) = Lub. Dpin (N, M)
N >0 N

) (1.16)
= 1%1_12 Diin (N, M).

The second part of the theorem follows from the observation that we
can construct a code of block length AN from a code of blocklength N
by repeating every word of the original code A times. The two codes
have equal g; z(m, m’) for all 4, k, m, m’, and hence they have equal Dyin.
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Thus
Duin{ AN, M) = Dnin(N, M). (1.17)

This implies the second part of the theorem. The third part follows from
(1.17) and the fact that P.(N, M, 1) is nonincreasing with N,

Theorem 2 reduces the problem of computing E to the problem of
computing Dumin(N, M ). This computation is always easy for M =
so we treat that case first. Recall from (1.06) that —D(m, m') is the
minimum over s of a weighted sum of the w;x(s). This can be Iower
bounded by the weighted sum of the minimums, yielding

=D(m, m') 2 20 30 qualm, m') min pin(s).  (L18)

with equality iff the same value of s simultaneously minimizes all u; z(s)
for which g:x(m, m’) > 0.1f we, set g x(m, m) = 1for the 7, k pair that
minimizes ming<; <1 pii( ), then (1.18) is satisfied with equality and at
the same time the right-hand side is minimized. We thus have

E; = Duin (N, 2) = max [~ min pi.(s)]. (1.19)
i,k 0gegl
It is interesting to compare this expression with the sphere packing
exponent Ey,(R) in the limit as R — 0. If B, = 0, some manipulation on
(I-1.7), (I-1.8), and (I-1.9) yields

E's,,(0+) lim Eo(p) = max — In Z H P(jl k)™  (1.20)

p>0

Comparing (1.20) with the definition of p;x(s) in (1.04), we see that
E; £ E,,(0") with equality iff the probability vector ¢that maximizes
(1.20) has only 2 nonzero components.

Having found the pair of input letters ¢, k that yield Es , it clearly does
not matter whether we set ¢q;5(1,2) = 1 or¢gx,:(1,2) = 1. However, we
mugt not attempt to form some hnear comblnatlon of these two optimum
solutions, for by making both ¢::(1, 2) and ¢,.(1, 2) nonzero we may
violate the condition for equality in (1.18). For example, suppose we
compare the following two codes of block length N for the completely
asymmetric binary channel of Fig. I-56. The disastrous result is de-

picted below:
Code 1: »n=11111 11111
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o] s i/2 i

(s):
4o E ——
3

2 !
55 (42%?-54-

74&»'5)

4 2 (2165 +a1bn)

69

F1ia. 1. A pairwise reversible binary input channel.

2o=22222 22222

—N/2— «—N/2—
Code 2: n=11111 22222
x2=22222 11111,

Using either code, an error will oceur only if the received sequence con-
sists entirely of output letter 2. For Code 1, P, = 1p"; for Code 2,
P, = "

For a class of channels to be defined as pairwise reversible channels,
this sensitivity to interchanging letters does not oceur, and for these
channels we shall soon see that the caleulation of Ey is relatively straight-
forward. A channel is pairwise reversible iff, for each ¢, k, pix(3) = 0.
Differentiating (1.04), this is equivalent to

2 VPGTIPGTR) In PG 14)

=2 VPGIOPG k) InP(j|k); all 4k

i

(1.21)

Equation (1.21) is equivalent to . x(s) being minimized at s = 3 for all
7, k. This guarantees that (1.18) is satisfied with equality and that a pair
of inputs in the same position in a pair of code words, 2., and z.- , can be
reversed without changing D(m, m’).

The class of pairwise reversible channels includes all of the symmetric
binary input channels considered by Sun (1965) and Dobrushin (1962)
(which are defined in a manner that guarantees that p;.(s) = w,.(s)
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B2 (8)

Fig. 2. A pairwise erasing ternary input channel (nonuniform but pairwise
reversible).
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Fic. 3. A ternary unilateral channel (TUC) (uniform but not pairwise re-
versible).

for all s), and many other binary input channels, such as the one in
Fig. 1 (as the reader is invited to verify ). For multi-input channels, there
is no relationship between the class of pairwise reversible channels and
the uniform channels discussed by Fano (1961, p. 126). The channel of
Fig. 2 is pairwise reversible but nonuniform; from any pair of inputs it
looks like a binary erasure channel. The channel of Fig. 3 is not pairwise
reversible even though it is uniform; from any pair of inputs it looks like
an asymmetric binary erasure channel.

For pairwise reversible channels, we may compute an exact expression
for Ey . To do this, we obtain a lower bound on Do (N, M) which can be
attained for certain.values of N. The bound is derived by a method first
introduced by Plotkin (1951). For any pair of code words for a pairwise
reversible channel, we have’

2 Readers who are familiar with the statistical literature will recognize the
expression for pix (3) as the measure of the difference between the distributions
P(j/i)y and P(j/k) which was first suggested by Helliger (1909) and later developed
by Bhattacharyya (1943).
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D(m,m') = =2, D qip(m, m uip(3). (1.22)
B k

Since the minimum discrepancy cannot exceed the average dis-
crepancy,

M(M ;MZ D(m, m"). (1.23)

The total diserepancy can be computed on a column by column basis.

Dy (N, M) =

K

M M N K
21 4\:—1 D(m,m') = — Z_:l 2_; ; M:(n) M (n)ui(3), (1.24)
where M1(n) is the number of times the kth channel input oceurs in the
nth column. Let M;™ denote the number of times the kth channel input
oceurs in the best possible column,

ma}i{ [_Z ; MM s,y (%)] = _Z ; Mz*Mlc*Ika(%) (1-25)

IMp= 4 i 4

Combining (1.23) through (1.25) results in a bound for pairwise re-
versible channels.

Duin(N, M) £ —=1/(M(M — 1)) 2. }ichi*Mk*m,k(%) (1.26)

We now show that this bound can be achieved when N = M/ Hk M,
To do this, we select the first column of the code so that it has the pre-
seribed composition, the kth channel input oceurring M;* times. Then we
choose as subsequent columns of the code all possible permutations of
the first column. In the constructed code, every column contributes the
same maximum amount to the total diserepancy, assuring equality be-
tween (1.24) and (1.25). Every pair of codewords is the same distance
apart, assuring equality in (1.23). Because of these two facts, (1.26)
holds with equality when N = M /(][ M.™1).

This construction can likewise be used for channels that are not pair-
wise reversible. The constructed code has the property that ¢, (m, m’) =
ge.i{m, m') = qi, independent of m and m’. This guarantees that, for
this code, (1.06) is optimized by setting s = %, for u;x(s) 4 ps,(s)
always attains its minimum at s = %, even when u;:(s) does not.

However, it may be possible to improve upon this construction for
channels which are not pairwise reversible. We summarize these results
in a theorem, whose proof follows directly from Theorem 2, (1.26), and
the construction discussed in the preceding two paragraphs.
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THEOREM 3.
By 2 /(MM — 1)) max 3 35 MMi(—In 32 ~/P(/9) PGTR)

with equality for channels which are pairwise reversible.

We next compare this result with E..(07), Gallager’s (1965) lower
bound to E(0"), the error exponent at infinitesimal rates. E.(0%) is given
by (1-1.29) and (I-1.30) as

E.(07) = max Z Z ¢igi(—In Z N/ PG/OPGE)), (1.27)

where ¢ is the probablhty vector specifying the composition of the code.
The vector ¢ is unrestricted bv the Diophantine constramts placed on
the vector I /M (Here M,* is the kth component of M™). This ad-
ditional freedom can only increase E.(07). This proves the first of the
three corollaries.

CorOLLARY 3.1. For pairwise reversible channels,

_EM .S_ (Z‘l/(M - 1)>Eez(0+)

The evaluation of the expression on the right of Theorem 3 is compli-
cated by the Diophantine constraints on the components of the vector
M. To first order in M, however, these constraints may be ignored, as
indicated by the following corollary.

CoroLLARY 3.2. For any channel,

) ) '—K”max - Zl#kz: <I-‘"ulc(%) - P"ma.x>
0CY/M) = AN = 1) ‘

where

Here K is the number of channel inputs and pmax = MaX s pin(3).

Since this corollary is not essential to the proof of Theorem 4, we omit
its proof. The détails of the straightforward but tedious calculation are
given by Berlekamp (1964).

‘For the remainder of this section, we shall be primarily concerned with
the behavior of B, for very large M. We are especially interested in the
limit of E as M goes to infinity, which we denote by the symbol .,

Since Ey is a monotonic nonincreasing function of M, it is clear that
the limit -exists. As a consequence of Corollaries 3.1 and 3.2, we have

COROLLARY 3.3. B = En.(0") with equality for channels whwh are
pairwise reversible. S
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This general inequality also follows directly from the definitions of
E, and E.(0") without invoking Corollary 3.2.

We now proceed to show that Corollary 3.3 holds with equality even for
channels which are not pairwise reversible.

THEOREM 4. For any discrele memoryless channel E,, = E.,.(07).

Remarks. The natural approach in attempting to prove Theorem 4
would be to attempt to calculate the average discrepancy on a column
by column basis as in (1.24). This direct approach does not work for
channels that are not pairwise revergible, however, the difficulty being
that the value of s that determines D(m, m’) in (1.06) is not the same as
the value of s that minimizes u; .(s) for the pairs of letters in the two code
words.

We shall circumvent this difficulty by going through some manipula-
tions on a particular subset of the code words in a code. The argument is
rather lengthy and will be carried out as a sequence of 5 Lemmas. For
motivation, the reader is advised to keep the ternary unilateral channel
(TUC) of Figure 3 in mind throughout the proof. We begm by defining
a relation of dominance between code words.

DeriNniTION. T, dOminates g, iff

=22 2 guslm, mwin(}) 2 0. o (128)

l\otxce that either z,, dominates z, , or z,  dominates xm , or both.
This follows because

Mi,k(%) = —u;/c,i(%); gin(m,m’) = qk,i(m', m) (1.29)
20 2 il mmia(d) = =30 2 qealm, m)uia($). (130)

For the TUC the codeword consisting of all 1’s dominates any other
eodeword which contains at least as many 2’s as 3’s, but it is dominated
by any other codeword which contains at least as many 3’s as 2’s.

Notice that dominance is not necessarily transitive except when the in-
put alphabet is binary. In general, we may have z dominate z’ and 2’
dominate z” without having z dominate z”.

Levmwa 4.1. If g, dominates ., , then

D(m,m') £ 3020 qaa(my m) [ =pis(h) = duia(3)]:
Proof. Reeall from (1.06) that
D(m,m') = —min 2 Z Goi(m, m )i e(s). (1.06)

0<s<l <
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The tangent line to a convex U function is a lower bound to the funec-
tion. Taking this tangent to u;x(s) at s = 1 yields

01<nn<11 21 E qs, k<7n m )Hz k(s)
= min . Z Gioe(my m)pin(3) + (s — Puia(d)].

0<sgl ¢

(1.31)

From the definition of dominance, (1.28), this linear function of s is

minimized at s* = 1.
q.ed.

Lemma 4.2. From an original code containing M codewords;, we may
extract a subset of at least loge M codewords which form an “ordered” code,
in which each word dominates every subsequent word.

Proof. We first select the word in the original code which dominates
the most others. According to the remarks following (1.28), this word
must dominate at least half of the other words in the original code. We
select this word as g, in the ordered code. All words in the original code
which are not dominated by 2y are then discarded. From the remaining
words in the original code, we select the word which dominates the most
others and choose it as 2. in the ordered code. The words which are not
dominated by g are then discarded from the original code. This process
is continued until all words of the original code are either placed in the
ordered code or discarded. Since no more than half of the remaining
words in the original code are discarded as each new word is placed in the
ordered code, the ordered code contains at least log M codewords.

q.ed.

Within an ordered code, every word dominates each succeeding word.
In particular, every word in the top half of the code dominates every word
in the bottom half of the code. This fact enables us to bound the average
diserepancy between words in the top half of the code and words in the
hottom half of the code on a column by column basis. Using this tech-
nique, Lemma 4.3 gives us a bound to the minimum discrepancy of any
ordered code in terms of E.,(0") and another term which must be investi-
gated further in subsequent lemmas.

LemmA 4.3. Consider any ordered code having 2M words of block length
N. The minimwm discrepancy of this code vs bounded by

M 2M
Dmin § 2 Z D(m7 m,)/M2
m=1 m’ =M+1

= Eez(0+) T 2dmax \/K N Z Z (Qk (n) — ar (n)) ’

n=1 k=1
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where

e 2 max | wia(3) + buia(d)] (1.32)

and ¢ "(n) = [@p'(n), ---, qc'(n)] is the composition of the nth column
of the top half of the code (i.e., the kth channel input letter occurs Mg’ (n)
times in the nth column of the first M codewords). Similarly, ¢ "(n) =
[ (n), - -+, gx"(n)] is the composition of the nth column of the bottom half
of the code.

Proof.

X & Dim,m)
Duin £ 2, 2, oamt (1.33)
m=1 m’'=M+1

M 2M

I D Zq“'“(m’m’ [— wia(1/2) — 1 uz.k<1/2>]. (134)

m=1 m'=M+1 {=1 k=1

A

Now for any values of ¢ and k,
M 2M

Gielmym') _ ZM@ (1.35)

m=1 m,=M+1 M2

because both sides represent the average number of occurrences of the
7th letter in the top half of the code opposite the kth lefter in the same
column of the bottom half of the code. Using this fact gives

Doin < & Z 2 Z Hn)gl(n) [—— Uirk (%) — % Ui <%>:| (1.36)

N =

This bounds D, in terms of the vectors gt(n) and gb(n). We now
introduce the vectors q(n) and 7(n) defined by

g(n) = 3l¢'(n) + ¢'(n)]

L . (1.37)
r(n) = 3lg'(n) — ¢'(n)].
gb(n) = g(n) + r(n) (1.38)
g'(n) = g(n) — r(n)
g¢i'(n)g’(n) = lgs(n) + ri(n)lig(n) — re(n)) (139)

gi(n)g(n) + rd{n)g(n) — ' (n)re(n).

Since ¢(n) is an average of the probability vectors ¢ ‘(n) and ¢ *(n),
g(n) is itself a probability vector. In fact, ¢(n) is just the composition
vector for the nth column of the whole code. Since q(n) is a probability
vector.
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'"; % g(n)ge(n)pin(3) = mqax ‘; ; qigmi 1(3)

(1.40)
= Eo(0%).
Equation (1.40) follolws from (1.27) and the definition of u:; in (1.06).
Furthermore, since i (%) = —pr«(%), we have
20 2 gi(m)g(n)pmial}) = 0.
vk (1.41)
Substituting (1.39), (1.40), and (1.41) into (1.36) gives
N
Dmin é Eez(0+) + % 2_:1 Z Zk: Tz(n)Qk(n) - qit<n>7‘k(n>
B (1.42)

' 1
Ihk(%) + %F-i,k (-é) )

< Ba(09) + 2= B 5 nm)atn) = gt |, (143)

where we have used the definition of dupax in (1.32). The remainder term
is bounded as follows:

2 2 Irm)a(n) — g (m)r(n))|
2 D5 Inmam)] + ¢ mnm)]
2 ()| 2 [g(m)] + | g ()]
222 [ru(n))| (1.44)
< 2\/f{—z;r—k2(—n). (1.45)

f

i

Equation (1.45) follows from Cauchy’s inequality which states that
Zakbk = ,‘/Zak2zbk2.
k k
We have used a; = 1, b, = | r(n)|. Averaging (1.45) over all N columns
gives

1/N ﬁ: b z]: | ri(n)gu(n) — g (n)ru(n) |

n=1 14

< ~—2‘§K Z: > i) (1.46)
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2\/‘ Z:l kz:l Ty (n>
by Cauchy. Substituting (1.37) into (1.46) completes the proof of
Lemma 4.3.
Lemma 4.3 bounds the minimum discrepancy in terms of the quantity

5 22 @) = e = UN Tn) = N 2t

where we let (n)? denote the dot product of the K-dimensional vector
r(n) with itself.

To complete the proof of Theorem 4, we would like to show that
1/N ZLl r(n)2 can be made arbitrarily small. Unfortunately, however,
the direct approach fails, because many columns may have substantially
different compositions in their top halves and their bottom halves. Nor
can this difficulty be resolved by merely tightening the bound in the
latter half of Lemama 4.3, for ecolumns which are very inhomogeneous may
actually make undeservedly large contributions to the total discrepancy
between the two halves of the code. For example, consider a code for the
TUC of Fig. 3. A column whose top fourth contains ones, whose middle
half contains twos, and whose bottom fourth contains threes contributes
—11n 7% — % In % to the average discrepancy. We wish to show that the
minimum discrepancy for this channel is actually not much better than

1In ¥ — 3In+%. This cannot be done directly because of columns
of the type just mentioned. We note, however, that this column which
contributes so heavily to the average discrepancy. between the top and
bottom halves of the code contributes nothing to discrepancies between
words in the same quarter of the block. It happens that all abnormally
good columns have some fatal weakness of this sort, which we exploit by
the following eonstruction.

Lemma 4.4. Given an ordered code with 2M words of block length N, we
can form a new code with M words of block length 2N by annexing the

| ZN

Fig. 4. Halving an ordered code.
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(M + 7)th word to the ith word for all 2 = 1, - -+ , M as shown in Fig. 4.
The new code has the following properties.

(1) The new code is ordered.

(2) The minimum discrepancy of the new code 1s no smaller than the
minsmum discrepancy of the original code.

3) Var(g) = Var () = () Z ) — dn + 1))

(4) Var (¢) = Var (g') <1

where:

g(n) s the composition of the nth column of the original code,
n=12--- N.

g’(n) is the composition of the nth column of the new code,
n=12 ---,2N.

1/N é g(n)

w2
[l

[Nw)
Il

' = 1/2N ; q(n)

il

Var (¢) = 1/N i (¢(n) — @)° = [l é g(n)2:! -7

Var (¢') = 1/2N nz=1 (d'(n) — Q’)2 = |:—2—%/. 7;1 g’(n)z] — g’z.

Proof of Property 1. Let qi «(m, m') be the joint composition of the
mth and m'th words in the new code, i.e., the fraction of times that the
ith channel input letter oceurs in the mth word of the new code opposite
the kth channel input letter in the m’th word. By the halving construe-
tion which generated the new code (Fig. 4),

ialm,m') = $giu(m, m') + qielm + M, m’ + M)]. (147)
If m < m’, then, in the original code
~ 22 2 gualm, m )i al(3) 2 0
=2 2 ginm + M,m' + M)uis(3) 2 0

Consequently, in the new code

=22 2 qix(m, mmin(h) 2 0. (1.48)
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Proof of Property 2. In the new code,
D'(m,m') = 3D(m, m’) + D(m + M, m’ + M)].
Thus D'(m,m’) can not be smaller than both D(m, m’) and

D(m + M, m' + M).
Proof of Property 3. q(n) = %[g'(n) + g’(n + N)]
1

=gy = f(n) + d(n+N)]=7¢ (1.49)

Var (¢') — Var (¢) = j\, :Zj: ' ) (;, 2 q(ﬂ))

n=1

2z

= LS o) + ¢+ M) = (¢ (n)
+ ¢(n + N))’} (1.50)

Z (d(n) — ¢'(n +N))".

Proof of Property 4. From Property 3, Var (¢) < Var ((_]'). Also, for
every n,

¢ (n)f = Z g (n) = (1.51)

1
2N .
We may now complete the proof of the theorem by iterating the

halving construetion to prove Lemma 4.5.
Lemma 4.5.

I M”z’

Var (¢') < ()Y = 1. (L.52)

2dmf
) Vflog (log IDF

Proof. Starting from any original code containing M codewords of
block length N, we may extract a subset of 2"°*“**®1” ¢ode words which
form an ordered code. Thig follows from Lemma 4.2 and the observation
that 21150817 < Jog M. (Here [log (log M )] is the largest integer less
than or equal to log (log M).)

We next halve the ordered code [log (log M )] times. This gives us a
sequence of [log (log M)]™ + 1 codes, starting with the original ordered
code and terminating with a degenerate code containing only one code-
word of block length N2!"5"#®1” Qince the properties of Lemma 4.4

Duin(N, M) < E. (0" (1.53)
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are hereditary, every code in the sequence is ordered and each code has a
minimum diserepancy no smaller than any of its ancestors (except the
final degenerate code, for which the minimum discrepaney is undefined).
The average variance of the column compositions of each of these codes
1s at least as great as the average variance of the column compositions of
the preceding codes; yet the average variance of each code in the
sequence must be between zero and one. Consequently, this sequence of
[log (log M )™ 4+ 1 codes must contain two consecutive codes for which
the difference in the variance of column compositions is less than
1/llog (log M)]". The former of these two consecutive codes is non-
degenerate, and Lemma 4.3 applies, with

Elﬁ ;Z:l ;_A_:l (g'(n) — g(n))* = i}—V ;,1 (¢'(n) — ¢ (n+ N))

(1.54)

= Var (g’) ~ Var (g) < 1/{log (log M )]~
q.e.d.

Theorem 4 follows directly from Lemma 4.5 and Theorem 2.
q.ed.

Combining (1.53) and (1. 12) we obtain an explicit bound on
P(N, M, 1).

2dmax V'K
P.(N,M,1) = exp — [Ew(m) T /Mlog Qog M-

2. 1  In4M
+/‘/Nlnpmin+ N :l

If we upper bound dy.x , as given by (1.32) by

(1.55)

Amax = 2max | uip(3)],
Sk

then (1.55) becomes equivalent to (I-1.17) and we have completed the
proof of Theorem I-3.

Equation (1.55) has a rather peculiar behavior with M. On the other
hand, PN, M, 1) must be a monotone nondecreasing funetion of M,
and thus for any M greater than some given value, we can use (1.55)
evaluated at that given M. It is convenient to choose this given M as
2\/1" , yleldlng ‘

P(N,M,1) 2 exp — N[Eo(0") + o(N)]; M z2vV¥  (1.56)
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where
2max VK 2 1 n2 , 2In2 3
0(N)=—mf——+4/~ln -+ -+ . {(1.57)
' /Tlog NT- N Pun /N N

These equations can now be restated in a form similar to our other
bounds on P.(N, M, 1).
THEOREM 5.

P(N,M,1) =z exp —N[E, (B — 0(N)) + 0(N)], (1.58)

where

E.. (0" ; =0 .
Bo(r) = {00 H2 (1.59)

03<N) - W._ (1.60)

Proof. Observe that when M Z 2V¥ we have B = (InM)/N =

(In2)/ +/N and (1.58) reduces to (1.56). For M < 2V¥, (1.58) simply
states that P,(N, M, 1) = 0.

2. THE STRAIGHT LINE BOUND

We have seen that the sphere packing bound (Theorem I-2) specifies
the reliability of a channel at rates above R, and that the zero rate
bound (Theorem I-3 or Theorem 5) specifies the, reliability in the limit
as the rate approaches zero. In this section, we shall couple these results
with Theorem I-1 to establish the straight line bound on reliability
given in Theorem I-4. Actually we shall prove a somewhat stronger theo-
rem here which allows us to upper bound the reliability of a channel by a
straight line between the sphere packing exponent and any low rate, ex-
ponential bound on error probability.

Tarorem 6. Let E,.(R) be a nonincreasing function of R (not neces-
sarily that given by (1.59)), let 0(N) and o0s(N) be nonincreasing with N
and let Nos(N ) and Nos(N) be nondecreasing with N. Let Ry < R, be non-
negative numbers and define the linear function

Ea(Ro) = NE(R1) + (1 — N E(Ry), (2.01)
where E,, is given by (I-1.07) and X is given by
Ro = )\Rl + (1 - >\)R2. (202)
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If
PN, M, 1) =2 exp — NIE,(R — 05(N)) + 04(N)]
15 valid for arbitrary positive M, N, then
PN, M,1) =z exp — N{EJR — 0s(N)] + 0(N)}
18 valid for
R: 2 R — 0s(N) £ Ry,

where

Oa(N) = o(N) + 0s(N) + R./N
OS(N) = Oz(N) + os(N) + %Elr(R2>

and 0,(N) and 0x(N) are given by (1-1.10) and B = (In M)/N.

(2.03)

(2.04)

(2.05)

(2.06)

(207)

Remarks. As shown in Figs. 5-8, E (R) is a straight line joining
Eu(Rs) at Ry to E;p(Ry) at By . 1t is clearly desirable, in achieving the
best bound, to choose E; and R so as to minimize E,(R). If E,(R) is
not convex U, it may happen, as in Fig. 8 that the best choice of B; , R,

depends on R.

Theorem I-4 of the introduction is an immediate consequence of
Theorem 6, obtained by choosing E;(R) as in Theorem 5 and choosing

Figs. 5-8. Geometric construction for Eu(R).



LOWER BOUNDS TO ERROR PROBABILITY. II 541

(o]

> + J N,
~N

o]

(o]

E_gr(R)

Es[(R)

Esp (R)

R
Fic. 7

R, = 0. The increased generality of Theorem 6 over Theorem I-4 is non-
empty, however. In Theorem 8 we shall give an example of a low rate
bound for the binary symmetric channel in which £, (R) behaves as in
Fig. 5.

The restriction in the theorem that E;(R) be nonincreasing with B
is no real restriction. Since P.(N, M, 1) is nonincreasing with M, any
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FiG. 8

bound in which F;(R) is increasing with B can be tightened to a bound
in which FE;(R) is not increasing. Likewise the restriction that Noy(N)
and Nos(N) be increasing with N is not serious since any bound can be
weakened slightly to satisfy this restriction.

Proof. By Theorem I-1, we have

PN, M,1) =2 PAN,, M, L)P,(N,,L+ 1,1}, (2.08)
where N; + N = N and L is an arbitrary positive integer. Applying

the sphere packing bound, Theorem I-2, to P.(N,, M, L) and applying
(2.03) to P,(N:, L 4+ 1,1), we have

PN, M, 1) = eXp{—Nl[Esan]]le/L — ol(N1)> + OZ(NI)]

-, (PEED o) + o4<N2>]}.

Using the expressions for oi( N) and 0:(N) in (I-1.10), we see that
No:i(N) is increasing with N for 7 = 1, 2, 3, 4. Thus we can lower bound
(2.09) by

(2.09)

HM/L NOl(N)
ML Nod )—N02<N)

i (D Vo) )

PN, M,1) = em{—NIE“,(l
(2.10)
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This is valid for any positive integers N; and N, summing to N, and
we observe that it is trivially valid if either N or N, 1s 0.

We next get rid of the restrictions that L, N1, and N, be integers, Let
L be an arbitrary real number between I and L -+ 1. We can lower
bound the right-hand side of (2.10) by replacing In M /L withn M/L
and In (L 4 1) with In L. Similarly, let N; be an arbitrary real number
between N; and N; -+ 1. The right-hand side of {2.10) can be lower
bounded by replacing Ny with N, . Finally, since Ny £ N — Ny + 1, we
can lower bound (2.10) by replacing N, with N — N, & 1. Making these
changes, we have

Pe(N, ]ll,l) _.2_- eXp{_NlEsp (

In (M/L) — Noy(N)
o)

(2.11)

. _ Y InL — Nos(N)
Nioo(N) + (W) = (N — Ny + DE,, (*—@N Yo )}

Define A to satisfy
R —o0s(N) =N+ (1 — MR, (2.12)
Ijrom the restriction (2.05), A satisfies 0 £ XA =< 1. Now choose ¥, and
L by
Ni =\N (2.13)
InL = Ry(N — Ny + 1) + Nog(N). (2.14)

By rearranging (2.14), we see that the argument of E; in (2.11)
satisfies

In L — Nos(N) P

N-N+1 =7

Likewise, using (2.12), (2.13), (2.14), and (2.06), the argument of
Epin (2.11) is given by

n(M/L) — Noy(N) 1|:lnM In L

(2.15)

N A
1

i >

[R - R2<1 -\ 4+ %) — o(N) — 02(N)]

(R — R(1 — ) — 0s(N)] =R,. (2.16)
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Substituting (2.15) and (2.16) into (2.11), we have

PN,M,1) Z exp — iv{)\Esp<R1) + <1 -+ %V) Eyn(R,)

(2.17)
+ 02(N) + 04(N)}

Combining (2.12), (2.02), and (2.01), we have
EyR — 0s(N)) = NE,(Ry) + (1 — N Ey(R:) (2.18)

Finally, substituting (2.18) and (2.07) into (2.17), we have (2.04), com-
pleting the proof.

The straight line bound E(R) depends critically on the low rate
bound Ei(R) to which it is joined. If the low rate bound is chosen as
E,, , then the resulting straight line bound E(R) is given by Theorem
1-4. Plots of this bound for several channels are shown in Figure I-4.

From the discussion following (1.20), we see that if C # 0 and Cy = 0,
then E, is strictly less than E,,(0"), and the straight line bound £,;(R)
of Theorem 4 exists over a nonzero range of rates. Also it follows from
Theorem 7 of Gallager (1965) that E..(R) is strictly convex U and there-
fore is strietly less than E,;(R) in the interior of this range of rates.

There is an interesting limiting situation, however, in which Eu(R)
and E.(R) virtually coincide. These are the very noisy ehannels, first
introduced by Reiffen (1963) and extended by Gallager (1965). A very
noisy channel is a channel whose transition probabilities may be ex-
pressed by

P(jlk) = (1l + €4), (2.19)

where r; is an appropriate probability distribution defined on the channel
outputs and | €| << 1 for all 7 and k. The function Eo(p) for such a
channel can be expanded as a power series in ¢; 5 . By neglecting all terms
of higher than second order, Gallager (1965) obtained

P
E = 2.20
where the capacity C is given by
C =max} ) Ti[Xk: ques e — (; geei )] (2.21)
q 7

max 2 > O e O i€ + €n — 2e60).  (2.22)
q i k i
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The resulting random coding exponent is given by
E(R) = (/C — vR)’ for C/ASRZC (2.23)
=(C/2 - R for R < C/4. (2.24)

We can calculate E, in the same way
E. = max — 2 ; ¢qe In 2 /PG HP(G [ B).  (I-118)
q g 7
Using (2.19) and expanding to second order in ¢, gives

L NVPGTIPGTR = 2l + €4/2 — 64/8) .

7 i (2.25)
(1 64/2 = G4/8).

From (2.19) we observe that

D riein =0 forall k (2.26)
7
2ANPGIOPG TR = 1~ 32 rilehi + & — 26 60). (2.27)
J 3

From (2.27), (1-1.18), and (2.22), we conclude that
E, = (/2 = E0). (2.28)

Thus in the limit as the ;. approach 0, the upper and lower bounds
to the reliability E(R) come together at all rates and (2.23) and (2.24)
give the reliability function of a very noisy channel.

For channels which are not very noisy, the actual reliability may lie
well below the straight line bound from X, to the sphere packing bound.
As a specific case in which these bounds may be improved, we consider
the binary symmetriec channel.

This channel has received a great deal of attention in the literature,
primarily because it provides the simplest context within which most
coding problems can be considered. The minimum distance of a code,
dmin , 18 defined as the least number of positions in which any two code
words differ. We further define d(N, M) as the maximum value of duiy
over all codes with M code words of length N. Here we are interested
primarily in the asymptotic behavior of d(N, M) for large N and M and
fixed B = (In M)/N. The asymptotic distance ratio is defined as

3(R)  lim sup % A(N, [T, (2.29)
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HAMMING

ELIAS

3 (R)

PLOTKIN

GILBERT

R ,lwz.

Fia. 9. Comparison of bounds on minimum distance for a binary symmetric
channel.

There are two well known upper bounds to 8(R), due to Hamming
(1950) and Plotkin (1951}, and one well known lower bound due to
Gilbert (1952). These are given implicitly by

In2 — H(8(R)/2) =2 R (Hamming) (2.30)

In2 —25(R)In2 =R  (Plotkin) (2.31)

In2 — H(8(R)) =R (Gilbert), (2.32)
where |

H(8) = —8Ind — (1 — &) In{1 — 3). (2.33)

See Peterson (1961) for an excellent discussion of these bounds.

Here we shall derive a third upper bound to 8(R), derived by Elias in
1960 but as yet unpublished. As shown in Fig. 9 the Elias bound is
stronger than either the Hamming or Plotkin bounds for 0 < B < In 2.
Tt should be observed, however, that this superiority applies only to the
asymptotic quantity, 8( R). For sufficiently small values of N, M there are
a number of bounds on d(N, M) which are stronger than the Elias
bound.

Tueorem 7 (Elias).

3(R) £ 2xa(1 — X&), (2.34)
where g 18 g@pen by
‘In2 — HQ:) = R; 0= =13 (2.35)

Before proving this theorem, we shall discuss the relationship between
8(R) and the reliability function E(R). Suppose that a code contains
two code words at a distance d apart. From 1-3.10, u(s) for these two
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s 1—s

words is given by d In {p’¢"™ + ¢’p' ], where p is the cross-over proba-
bility of the channel (see Fig. I-5a) and ¢ = 1 — p. This is minimized
at s = %, and from (I-3.20) and (I-3.21), one of the code words has an
error probability bounded by

Pow = iexp\:d In 2+/pg — /‘/g In %‘J, (2.36)

where we have used (1.11) in bounding ¢” (%).

Next, for a code with 2M code words of block length N, we see by
expurgating M of the worst words that at least M code words have a
distance at most d(N, M) from some other code word. For such a code

P,z %exp [——d(N, M) In2+/pg — VAN, M)/2 In %J (2.37)
Combining (2.37) with (2.29), we obtain

PN, M, 1) Z exp —N3(R) In2v/pg + o(N)} (2:38)

E(R) 5<R/

In 4pq. | :.. ) (2.39)

Conversely, if a code of block length N has minimum d‘is‘t@néeia(R)N ,
then it is always possible to decode correctly when fewer than ¥8( R)N
errors oceur. By using the Chernov (1952) bound, if p < 16(1‘3) the
probability of 36(R)N or more errors is bounded by

P, < exp — N[—é(—ZR—)ln P — (13— BL‘ZR—>> Ing— H<5tR)>:| (2. 40)

Ih

B(R) 2 —.:@m p— (1 - @) Ing — H<@> (2.41)

For more complete discussions of techmques for boundmg the elrox
probability on a binary symmetric channel, see Fano (1961), Chap T or
Gallager (1963), Chap. 3. The bounds on reliability given by (2.39) and
(2.41) are quite different, prlmarlly because it is usually p0851ble to de-
code correctly when many more than $6(R)N errors occur As P. be—'
comes very small, however, the minimum distance of the code becomes
increasingly important, and dividing (2.39) and (2.41) by —Inp, we see
that

aR) . E(R) S
2 ;E& —h’lp R A SRR X (242)
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N

[=— AT MOST
L ONES

!

U, ONES
Z, ZERCES

Fra. 10. Construetion for Elias bound.

Along with (2.42), there are several other interesting connections be-
tween E(R) and 8(R). For example, if one could show that 8(B) was
given by the Gilbert bound (2.32) with equality, then upon substituting
(2.32) into (2.39) one would find an upper bound for reliability which is
equal to the lower bound E..(R) over the range of rates for which
E.(R) > E.R). By combining this with Theorem 6, E(R) would be
determined for all rates and would be equal to the known lower bound to
E(R). Thus the question of determining E(R) for the BSC hinges
around the problem of determining 6(R).

Proof of Theorem 7. The proof of the Elias bound combines the argu-
ments of Plotkin and Hamming in an ingenious way. For any integer L,
0 £ L £ N/2, there are 21— (f) binary N-tuples within a sphere of
radius L around any given code word (i.e., N-tuples that have a distance
L or less from the code word). For M code words, these spheres contain

M rZLo (127) N -tuples, counting an N-tuple once for each appearance

ina sphere. Since there are only 2" different binary N-tuples, some criti-
cal N-tuple must appear in at least A spheres where

A2 [z“NM 2:% (Zj )T (243)

Thus this critical N-tuple contains at least A code words within a sphere
of radius L around itself.
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For the remainder of the proof, we consider only these A code words
and we assume that L is chosen go that A = 2. For convenience we trans-
late these code words by subtracting the eritical word from each of them.
Each of the A translated code words then has at most L ones.

We next list the A translated code words as in Fig. 10. Let. U, denote
the number of ones in the nth column Z, , the number of zeroes. The total
number of ones in the A X N matrix of Fig. 10 may be computed either
by summing along the columns or along the rows. This gives

> U, £ AL. (2.44)

We now compute the total distance among the <§> pairs of translated

code words. The contribution to the total distance from the nth column
is UnZ, . Consequently,

Qoo = D UnZn . (2.45)

Since the minimum distance cannot exceed the average distance, we

have
doin < dioy / (;1) - 2231 Un(A — U.) / <‘§) (2.46)

'

The function 24—y Un(A — U,) is a concave function of the U, , and
is therefore maximized, subject to the constraint (2.44), by making the
partial derivation with respect to U, a constant. Thus the maximum
oceurs with U, = AL/N for all n:

(-
e s —— A N o - 1) .
1
O*A—J
min 1
dN < 20L/N)1 = L/N) + g =5 (2.48)

Since (2.48) is valid for any L such that 4 = 2, L ean be chosen so
as to optimize the bound. In the theorem, however, we are interested.in
asymptotic results for fixed R, large N, and M = [¢"*]". First we lower
bound A. »
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Shannon® has shown that

@r) z [8L(N — L)/NT™* exp NH(L/N). (2.49)
+ The first term is lower bounded by taking L = N/2, yielding
~ (N N 1
: > ——= ¢
2 ( i) > (L) 2 5% exp NH(L/N). (2.50)

Next, choose L to satisfy
L—-1 ln M  3InN L
I _ < 4
H( i > <In2— + - = H(N) (2.51)

Observe that for any fixed B > 0, this will have a solution for large
enough N. Combining (2.43), (2.50), and (2.51) we obtain

A > 4/2; exp,: In N:I \/2 (2.52)

. Next recalling the definition of Az in (2.35), the left-hand side of (2.51)
becomes '

H(LN ) < HOw) + 31nN. (2.53)

Since H is a concave (1 function, we can combine (2.53) with the result
that H(%) = In 2 to obtain

L -1 3In N an—H()\R):I
REEDI (1) [EET (5) Jees
Substituting (2.52) and (2.54) into (2.48), we have
"’(—]‘;’,@ < a1 — Aa) + o(N), (2.55)

Where o(N ) can be taken as
In N ln2——H(>\R)) 2 1
= =, 2.
i < — T N -2 (2.56)
If we now substitute the Elias bound (2.34) into (2.39), we get a new
upper bound on reliability given by:
. THEOREM 8, For a binary symmetric channel, an upper bound on relia-

(N)—S

BEX e X Slhabnnon, unpublished seminar notes, M. I. T., 1956. For a published
derivation, see Ash (1965), p. 113.
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bility is gien by

E(R) £ En(R) = — (1 —N\g) Indpg,  (2.57)
where \g 1s given by (2.35).
REcE1vED: January 18, 1966
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