Scalar Quantization

Original purpose: to discretize “analog” values. For example

\[x \rightarrow \left\lfloor x + \frac{1}{2} \right\rfloor \] (round to the nearest integer)

Definition (Scalar quantizer)

An \(N \)-point scalar quantizer is a mapping

\[Q : \mathbb{R} \rightarrow C \]

where \(C = \{y_1, y_2, \ldots, y_N\} \subset \mathbb{R} \).

- \(C \) is called the codebook of \(Q \).
- \(y_1, \ldots, y_N \) are the output levels (or output points, reproduction points, quantization points, etc).
- We always assume indexing such that \(y_1 < y_2 < \cdots < y_N \).

Encoder-Decoder structure

- **Encoder**: \(E : \mathbb{R} \rightarrow \{1, \ldots, N\} \) defined by \(E(x) = j \iff x \in R_j \)
- **Decoder**: \(D : \{1, \ldots, N\} \rightarrow \{y_1, \ldots, y_N\} \) defined by \(D(j) = y_j \)
- Thus \(Q(x) = D(E(x)) \)

Rate of \(Q \):

\[R(Q) = \log_2 N \text{ bits/sample} \]

- \(R \) is the number of bits needed to represent the \(N \) indices with binary words of a fixed length (fixed-rate binary encoding)

The sets \(R_i = \{x : Q(x) = y_i\}, \ i = 1, \ldots, N \) are called the quantizer cells.

Clearly

\[R_i \cap R_j = \emptyset \quad \text{if} \quad i \neq j \]

and

\[\bigcup_{i=1}^{N} R_i = \mathbb{R} \]

so that \(R_1, \ldots, R_N \) form a partition of \(\mathbb{R} \).

Note: \(Q \) is completely described by \(C \) and \(\{R_1, \ldots, R_N\} \) since

\[Q(x) = y_i \quad \text{if and only if} \quad x \in R_i \]
Definition (Regular quantizer)

A quantizer \(Q \) is called a **regular** quantizer if

(a) each \(R_i \) is an interval \((x_{i-1}, x_i]\) (or \([x_{i-1}, x_i)\) or \((x_{i-1}, x_i)\), etc).

Note: \(x_{i-1} = \pm \infty \) and/or \(x_i = \pm \infty \) are not excluded

(b) \(y_i \in R_i \) for all \(i = 1, \ldots, N \).

- \(x_0, x_1, \ldots, x_N \) are called the **decision levels**
- For a regular quantizer \(x_0 < y_1 < x_1 < y_2 < \cdots < y_N < x_N \).

Example: 4-level regular quantizer

\[
\begin{array}{ccccccc}
& y_1 & x_1 & y_2 & x_2 & y_3 & x_3 & y_4 \\
\hline
R_3 & & & & & & & \\
\end{array}
\]

Example: Infinite-level uniform quantizer

Define

\[
Q(x) = \left\lfloor x + \frac{1}{2} \right\rfloor
\]

- The output levels are \(y_i = i, i = 0, \pm 1, \pm 2, \ldots, N = \infty \).
- The codebook is \(C = \mathbb{Z} \), the set of all integers.
- The quantizer cells are determined as:

\[
Q(x) = i \iff i \leq x + \frac{1}{2} < i + 1 \iff i - \frac{1}{2} \leq x < i + \frac{1}{2}
\]

so

\[
R_i = \left[i - \frac{1}{2}, i + \frac{1}{2} \right), \quad i = 0, \pm 1, \pm 2, \ldots
\]

Quality of reproduction

- **Distortion measure:** \(d(x, y) \) measures the distortion (or loss) resulting if the input \(x \) is reproduced as \(y \).
- Mathematically, we require \(d(x, y) \geq 0 \) for all \(x, y \in \mathbb{R} \).
- Instantaneous distortion of \(Q \) for input \(x \):

\[
d(x, Q(x))
\]

- A random variable (r.v.) \(X \) is often called a **random source**.

Expected distortion of \(Q \):

\[
D(Q) = Ed(X, Q(X))
\]

To be useful, the distortion measure should be

- tractable (easy to compute)
- meaningful for perception or application

Some popular choices:

- \(d(x, y) = (x - y)^2 \) (squared error distortion, ubiquitous)
- \(d(x, y) = |x - y|^r \) (\(r > 0 \); \(r = 1 \) is the most common choice)
Assume

- The source X has probability density function (pdf) f (short notation: $X \sim f$);
- Q is a regular quantizer with output levels y_1, \ldots, y_N and decision levels x_0, \ldots, x_N.

Then the expected distortion is

\[
Ed(X, Q(X)) = \int_{-\infty}^{\infty} d(x, Q(x))f(x) \, dx = \sum_{i=1}^{N} \int_{R_i} d(x, Q(x))f(x) \, dx = \sum_{i=1}^{N} \int_{x_{i-1}}^{x_i} d(x, y_i)f(x) \, dx
\]

Example: N-level *uniform quantizer* over the interval $(a, b]$:

- Let $\Delta = (b - a)/N$ and for $i = 1, \ldots, N$,

 $R_i = (a + (i - 1)\Delta, a + i\Delta]$

 $y_i = a + \Delta \left(i - \frac{1}{2} \right)$

Assume X is uniformly distributed over $[a, b]$:

\[
f(x) = \begin{cases}
\frac{1}{b - a} & \text{if } a \leq x \leq b \\
0 & \text{otherwise}
\end{cases}
\]

Consider the squared error $d(x, y) = (x - y)^2$.

Signal-to-noise ratio

Assume $d(x, y) = (x - y)^2$. Then $D(Q)$ is called the *mean squared error* (MSE) of Q.

- $e = Q(X) - X$ is called the quantization error (noise) since $Q(X) = X + Q(X) - X = X + e$
- $D(Q) = E[(X - Q(X))^2] = E(e^2)$
- *Signal-to-noise ratio* (signal-to-quantization noise ratio):

 \[
 \text{SNR} = 10 \log_{10} \frac{E(X^2)}{D(Q)} \text{ dB}
 \]

We conclude

\[
D(Q) = \frac{\Delta^2}{12}
\]
Performance of quantizers

The performance of an N-level quantizer is measured by its distortion and rate:

\[
D(Q) = \text{Ed}(X, Q(X)) \\
R(Q) = \log_2 N
\]

Goal: Find optimal tradeoffs between distortion and rate; i.e., minimize one while constraining the other.

Note: distortion and rate are conflicting quantities

Optimality of scalar quantizers

Definition

Let Q_N denote the family of all N-level quantizers. $Q^* \in Q_N$ is an optimal quantizer if

\[
\text{Ed}(X, Q^*(X)) = \min_{Q \in Q_N} \text{Ed}(X, Q(X))
\]

Remarks:

- Q^* depends on the distribution of X and on d.
- Q^* is not necessarily unique (there may be more than one optimal N-level quantizers).
- Can be shown that Q^* exists for all N and “reasonable” d if $\text{Ed}(X, y) < \infty$ for some $y \in \mathbb{R}$.

Theorem 1 (Nearest Neighbor Condition)

Consider all N-level scalar quantizers with codebook $\mathcal{C} = \{y_1, \ldots, y_N\}$. Among these, any quantizer with quantization regions satisfying

\[
R_i \subset \{x : d(x, y_i) \leq d(x, y_j), \quad j = 1, \ldots, N\} \quad i = 1, \ldots, N \quad (*)
\]

has minimum distortion.

Note: Q with codebook \mathcal{C} satisfies $(*)$ if and only if for any x,

\[
Q(x) = y_i \quad \text{implies} \quad d(x, y_i) \leq d(x, y_j) \quad \text{for all} \quad j
\]

Equivalently, for all x,

\[
d(x, Q(x)) = \min_{y_j \in \mathcal{C}} d(x, y_j)
\]

or

\[
Q(x) = \arg \min_{y_j \in \mathcal{C}} d(x, y_j)
\]

“Proof” of Theorem 1: Let $Q \in Q_N$ with codebook \mathcal{C} satisfy $(*)$, and let $\hat{Q} \in Q_N$ have codebook \mathcal{C} but arbitrary quantization regions.

Then for all x,

\[
d(x, \hat{Q}(x)) \geq \min_{y_j \in \mathcal{C}} d(x, y_j) = d(x, Q(x))
\]

Thus

\[
\text{Ed}(X, \hat{Q}(X)) \geq \text{Ed}(X, Q(X))
\]
The subsets
\[\tilde{R}_i = \{ x : d(x, y_j) \leq d(x, y_i), \ j = 1, \ldots, N \} \ i = 1, \ldots, N \]
cover the real line (i.e., \(\bigcup_{i=1}^{N} \tilde{R}_i = \mathbb{R} \)), but they are not disjoint.

A simple tie-breaking rule giving an optimal partition is
\[
R_1 = \tilde{R}_1, \quad R_i = \tilde{R}_i \setminus \bigcup_{j=1}^{i-1} R_i \quad \text{for } i = 2, \ldots, N
\]

To uniquely define \(R_i \), we choose
\[
R_i = (x_{i-1}, x_i), \quad \text{for } i = 2, \ldots, N - 1
\]

Given \(C \), the optimal quantizer is regular. The decision levels are the midpoints between two neighboring output levels.

Theorem 2 (Centroid Condition)

Consider all \(N \)-level scalar quantizers with a given partition \(\{R_1, \ldots, R_N\} \). Among these, the quantizer \(Q \) with output levels
\[
y_i = \arg\min_{y \in \mathbb{R}} E[d(X, y)|X \in R_i], \quad i = 1, \ldots, N
\]
has minimum distortion.

- \(y_i \) is called the centroid of \(R_i \).
- The centroid \(y_i \) may not be unique.

Special Case: \(d(x, y) = |x - y|^r \) (includes MSE)

\[
|x - y_i|^r \leq |x - y_j|^r \iff |x - y_i| \leq |x - y_j|
\]

Thus
\[
\tilde{R}_i = \{ x : |x - y_i| \leq |x - y_j|, \ j = 1, \ldots, N \} \ i = 1, \ldots, N
\]

If \(y_1 < y_2 < \cdots < y_N \), then \(\tilde{R}_i = [x_{i-1}, x_i] \), where
\[
x_{i-1} = \frac{y_{i-1} + y_i}{2} \quad \text{and} \quad x_i = \frac{y_i + y_{i+1}}{2}, \quad i = 2, \ldots, N - 1
\]

Proof of Theorem 2: Let \(P_i = P(X \in R_i) \). For any \(\hat{Q} \) with partition \(\{\hat{R}_1, \ldots, \hat{R}_N\} \) and arbitrary output levels \(\{\hat{y}_1, \ldots, \hat{y}_N\} \),

\[
Ed(X, \hat{Q}(X)) = \sum_{i=1}^{N} E[d(X, \hat{Q}(X))|X \in R_i]P_i
\]

\[
= \sum_{i=1}^{N} E[d(X, \hat{y}_i)|X \in R_i]P_i
\]

\[
\geq \sum_{i=1}^{N} \min_{y} E[d(X, y)|X \in R_i]P_i
\]

\[
= \sum_{i=1}^{N} E[d(X, y_i)|X \in R_i]P_i = Ed(X, Q(X)) \quad \square
\]
Special Case: \(d(x, y) = (x - y)^2 \).

Theorem 3 (Centroid Condition for MSE)

The \(y_i \)'s minimizing the distortion given a partition \(\{R_1, \ldots, R_N\} \) are uniquely given by

\[
y_i = E[X|X \in R_i], \quad i = 1, \ldots, N
\]

Note: If \(X \sim f \), then

\[
f_{X|R_i}(x) = \begin{cases} \frac{f(x)}{P(X \in R_i)} & \text{if } x \in R_i \\ 0 & \text{otherwise} \end{cases}
\]

so

\[
E[X|X \in R_i] = \int_{-\infty}^{\infty} x f_{X|R_i}(x) \, dx = \frac{\int_{R_i} x f(x) \, dx}{\int_{R_i} f(x) \, dx}
\]

Proof of Theorem 3: Recall that for any r.v. \(Z \) with \(E(Z^2) < \infty \)

\[
E[(Z - E(Z))^2] \leq E[(Z - y)^2]
\]

and equality holds iff \(y = E(Z) \).

Let \(Z_i \) have the conditional distribution of \(X \) given \(X \in R_i \). Then

\[
E(Z_i) = E[X|X \in R_i] = y_i
\]

For any \(y \)

\[
E[(X - y)^2|X \in R_i] = E[(Z_i - y)^2] \\
\geq E[(Z_i - E(Z_i))^2] \quad \text{from (\ast)} \\
= E[(Z_i - y_i)^2] \\
= E[(X - y_i)^2|X \in R_i]
\]

Also, \(y_i \) is the unique minimizer by (\ast). \(\Box \)

Remarks:

- The Nearest Neighbor Condition (NNC) and the Centroid Condition (CC) are necessary conditions for optimality.
- An optimal quantizer has to satisfy both the NNC and the CC. The converse is not true: NNC+CC do not imply that a quantizer is optimal.
- NNC+CC = Lloyd-Max conditions. A quantizer satisfying both conditions is called a Lloyd-Max quantizer.
- The NNC determines the optimal encoder \(\mathcal{E} \) given a decoder \(\mathcal{D} \). The CC determines the optimal decoder \(\mathcal{D} \) given an encoder \(\mathcal{E} \).
- The NNC is independent of the source distribution (depends only on the distortion measure).
- The NNC implies that an optimal quantizer can be described by its codebook alone.

Simple examples for Lloyd-Max quantizers (MSE)

Example 1 (2-level quantizer): Assume \(X \sim f \) and that \(f(x) = f(-x) \) for all \(x \). Let

\[
c = E[X|X > 0] = \frac{\int_{0}^{\infty} x f(x) \, dx}{\int_{0}^{\infty} f(x) \, dx} = 2 \int_{0}^{\infty} x f(x) \, dx
\]

and define

\[
Q(x) = \begin{cases} c & \text{if } x > 0 \\ -c & \text{if } x \leq 0 \end{cases}
\]

Then \(N = 2 \), \(R_1 = (-\infty, 0] \), \(y_1 = -c \), \(R_2 = (0, \infty) \), \(y_2 = c \).

- Check NNC: \(x_1 = \frac{y_1 + y_2}{2} = 0 \) (satisfied)
- Check CC: \(y_i = E[X|X \in R_i], i = 1, 2 \) (satisfied)

Note: \(Q \) is a Lloyd-Max quantizer, but not necessarily optimal!
Example cont’d: Special case: assume $X \sim N(0, \sigma^2)$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-x^2/(2\sigma^2)}$$

Then

$$c = \frac{2}{\sqrt{2\pi}\sigma} \int_{0}^{\infty} xe^{-x^2/(2\sigma^2)} dx = \frac{2}{\sqrt{2\pi}\sigma} \left[-\sigma^2 e^{-x^2/(2\sigma^2)} \right]_{0}^{\infty} = \sigma \sqrt{\frac{2}{\pi}}$$

It can be proved that Q is indeed the (unique) optimal 2-level quantizer for the Gaussian case.

Example 2 (Uniform quantizer): N-level uniform quantizer over the interval (a, b): for $i = 1, \ldots, N$

$$R_i = (a + (i - 1)\Delta, a + i\Delta)$$

$$y_i = a + \Delta \left(i - \frac{1}{2} \right)$$

- Each R_i is an interval of length $\Delta = \frac{b - a}{N}$
- y_i is the midpoint of R_i.
- $x_i = \frac{y_i + y_{i+1}}{2} \implies$ NNC is satisfied.

Assume X is uniformly distributed over $[a, b]$:

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \leq x \leq b \\ 0 & \text{otherwise} \end{cases}$$

The Lloyd quantizer design algorithm

Idea: For a fixed codebook, optimize the partition. For the resulting partition, optimize the codebook. Iterate...

Lloyd Iteration

(a) Given $C_{m} = \{y_{1}^{(m)}, \ldots, y_{N}^{(m)}\}$, use the NN condition to form the optimal partition

$$R_{i}^{(m)} = \{x : d(x, y_{i}^{(m)}) \leq d(x, y_{j}^{(m)}), \quad j = 1, \ldots, N\} \quad i = 1, \ldots, N$$

(b) Determine $C_{m+1} = \{y_{1}^{(m+1)}, \ldots, y_{N}^{(m+1)}\}$ using the centroid condition

$$y_{i}^{(m+1)} = \arg \min_{y \in \mathbb{R}} E[d(X, y)|X \in R_{i}^{(m)}], \quad i = 1, \ldots, N$$

(For MSE $y_{i}^{(m+1)} = E[X|X \in R_{i}^{(m)}]$)
Lloyd algorithm

Step 1 Inputs: pdf \(f(x) \), initial codebook \(C_1 = \{y_1^{(1)}, \ldots, y_N^{(1)}\} \), threshold \(\epsilon > 0 \). Set \(m = 1 \) and \(D_1 = Ed(X, Q^{(1)}(X)) \).

Step 2 Given \(C_m \), perform the Lloyd iteration (a) and (b) to generate \(C_{m+1} \).

Step 3 Compute \(D_{m+1} = Ed(X, Q^{(m+1)}(X)) \).
- If \(\frac{D_m - D_{m+1}}{D_m} < \epsilon \), then output \(C_{m+1} \) and stop.
- Otherwise \(m := m + 1 \) and go to Step 2.

Remarks:
- NNC+CC: (a) and (b) in the Lloyd iteration either reduce the distortion or leave it unchanged. Thus
 \[
 D_1 \geq D_2 \geq \cdots \geq D_m \geq D_{m+1} \geq \cdots
 \]
 and \(D_m \) converges to a limit as \(m \to \infty \). Hence
 \[
 \lim_{m \to \infty} \frac{D_m - D_{m+1}}{D_m} = 0
 \]
 and so the algorithm always stops after a finite number of iterations.
- It is not guaranteed that the sequence of codebooks \(C_m \) converges as \(m \to \infty \).
- Even if \(C_m \) converges, the “limit quantizer” may not be optimal (it is only guaranteed to be “locally optimal”).

Design from training data

In practice, the distribution (pdf) of \(X \) is unknown. Instead, independent (or dependent) samples \(V_1, V_2, \ldots, V_M \) with \(V_j \sim X \) are given.

(i) We could form an estimate \(f_M(x) \) of \(f(x) \) from \(V_1, \ldots, V_M \). Then use the Lloyd algorithm with \(f_M \). Computationally demanding.

(ii) Direct approach: given the training set \(\{v_1, \ldots, v_M\} \), approximate the distribution of \(X \) by the distribution of a discrete r.v.

\[
P(Z_M = v_j) = \frac{1}{M}
\]

i.e., assign probability mass \(1/M \) to each \(v_j \).

If the \(v_j \) are all distinct (which happens with prob. 1 if produced by a source with a pdf), then a valid discrete distribution is obtained. This is the empirical distribution of the training sequence.

Remarks:
- For any quantizer \(Q \)
 \[
 Ed(Z_M, Q(Z_M)) = \sum_{j=1}^{M} d(v_j, Q(v_j))P(Z_M = v_j)
 = \frac{1}{M} \sum_{j=1}^{M} d(v_j, Q(v_j))
 \]
 Thus optimizing \(Q \) for \(Z_M \) is equivalent to minimizing the average distortion of \(Q \) over the training set.
- Assume \(v_1, \ldots, v_M \) are drawn independently from the distribution of \(X \) or form a stationary and ergodic sequence. It can be shown that as \(M \to \infty \), the distribution of \(Z_M \) (the empirical distribution) approximates the distribution of \(X \) increasingly well. Thus for large \(M \), minimizing the average distortion of \(Q \) over the training set approximates optimizing \(Q \) for \(X \).
Lloyd-Max conditions for training sets (MSE)

NN condition: Since independent of the source, remains unchanged. Need only to partition the training set \(T = \{ v_1, \ldots, v_M \} \):

\[
R_i = \{ v \in T : |v - y_i| \leq |v - y_j|, j = 1, \ldots, N \} \quad i = 1, \ldots, N
\]

Tie breaking: if \(v \in T \) has two nearest neighbors, assign it to the one with the smaller index.

Centroid condition: Given \(R_1, \ldots, R_N \), the MSE centroids are

\[
y_i = E[Z_M | Z_M \in R_i] = \frac{1}{|R_i|} \sum_{v_j \in R_i} v_j
\]

where \(|R_i|\) is the number of training samples in \(R_i \).

Performance Analysis

Distortion of optimal \(N \)-level quantizer:

\[
D^*(N) = \min_{Q \in \mathcal{Q}_N} Ed(X, Q(X))
\]

For \(X \sim f \) and MSE

\[
D^*(N) = \min_{Q \in \mathcal{Q}_N} \int_{-\infty}^{\infty} (x - Q(x))^2 f(x) \, dx
\]

\[
= \min_{y_1 < y_2 < \cdots < y_N} \sum_{i=1}^{N} \int_{x_{i-1}}^{x_i} (x - y_i)^2 f(x) \, dx
\]

where \(x_i = \frac{1}{2}(y_i + y_{i+1}), \quad i = 1, \ldots, N - 1 \).

Thus determining \(D^*(N) \) and the optimal \(Q^* \) involves the minimization of a real function of \(N \) real variables. Very hard, nonlinear and non-convex problem!

Lloyd algorithm for training data and MSE

Step 1 Inputs: training set \(T = \{ v_1, \ldots, v_M \} \), initial codebook \(C_1 = \{ y_1^{(1)}, \ldots, y_N^{(1)} \} \), and threshold \(\epsilon > 0 \). Set \(m = 1 \).

Step 2 Given \(C_m \), partition \(T \) into \(N \) bins \(R_1^{(m)}, \ldots, R_N^{(m)} \) using the NNC. Calculate the empirical average inside each bin

\[
y_i^{(m+1)} = \frac{1}{|R_i^{(m)}|} \sum_{v_j \in R_i^{(m)}} v_j
\]

to generate \(C_{m+1} \).

Step 3 Compute

\[
D_{m+1} = \frac{1}{M} \sum_{j=1}^{M} (v_j - Q(v_j))^2
\]

If \((D_m - D_{m+1})/D_m < \epsilon \), then output \(C_{m+1} \) and stop. Otherwise \(m := m + 1 \) and go to **Step 2**.

Companding quantization

Provides structure facilitating performance analysis

\[
X \xrightarrow{G} Q_\Delta \xrightarrow{G^{-1}} Q(x)
\]

- \(G : \mathbb{R} \to (a, b) \) monotone increasing and invertible (compressor)
- \(Q_\Delta : N \)-level uniform quantizer with support \((a, b)\) and step size \(\Delta = \frac{b-a}{N} \).
- \(G^{-1} : (a, b) \to \mathbb{R} \), the inverse of \(G \) (expander)

\[
Q(x) = G^{-1}(Q_\Delta(G(x)))
\]
Proposition 1

For any N-level regular quantizer Q there exists a companding realization.

Proof of Proposition 1: For simplicity assume Q has bounded support. The output levels and decision levels are ordered as $x_0 < y_1 < x_1 < y_2 < \cdots < y_N < x_N$.

Prescribe the values of G such that

- $G(y_i) = a + \Delta(i - \frac{1}{2})$, $i = 1, \ldots, N$
- $G(x_i) = a + i \Delta$, $i = 0, \ldots, N$
- $G(x)$ is *linearly* interpolated between these discrete points

Then

- $G(x) : (x_0, x_N) \rightarrow (a, b)$ is strictly monotone increasing (so it is invertible)
- $x \in (x_{i-1}, x_i) \Rightarrow G(x) \in (a + (i - 1)\Delta, a + i\Delta) \Rightarrow Q_\Delta(G(x)) = a + \Delta(i - \frac{1}{2}) \Rightarrow G^{-1}(Q_\Delta(G(x))) = y_i$ \hfill \Box

Note: $G(x)$ can be “smoothed out” while retaining these properties.

Example: $N = 5$

Another look at $D^*(N)$

- Fix (a, b) and let $Q_{G,N}$ denote the N-level quantizer realized by the compressor function G.
- By the proposition
 \[D^*(N) = \min_{Q \in \mathcal{Q}_N} E[(X - Q(X))^2] = \min_G E[(X - Q_{G,N}(X))^2] \]
- Hence it is of great interest to determine $\min_G E[(X - Q_{G,N}(X))^2]$
- Will do this under the assumption that N is large (“high-resolution conditions”)
High-resolution performance

Fix \(G \), let \(N \rightarrow \infty \)

Assumptions

(i) \(N \) is large, \(\Delta_i = (x_i - x_{i-1}) \) is small for \(i = 2, \ldots, N - 1 \)
(ii) \(X \sim f \), where \(f \) is a continuous pdf
(iii) \(G : \mathbb{R} \rightarrow (a, b) \) is continuously differentiable

Will do a series of approximations based on these assumptions

\[
D(Q_{G,N}) = \sum_{i=1}^{N} \int_{x_{i-1}}^{x_i} (x - y_i)^2 f(x) \, dx
\]

\[
= \sum_{i=2}^{N-1} \int_{x_{i-1}}^{x_i} (x - y_i)^2 f(x) \, dx + \int_{x_{N-1}}^{x_N} (x - y_N)^2 f(x) \, dx
\]

“granular” distortion \(D_{gr} \)

\[
+ \int_{-\infty}^{x_1} (x - y_1)^2 f(x) \, dx + \int_{x_N}^{\infty} (x - y_N)^2 f(x) \, dx
\]

“overload” distortion \(D_{ol} \)

Assumption (iv): The overload distortion is negligible compared to the granular distortion

\(D(Q) \approx D_{gr} \)

Thus

\[
\int_{x_{i-1}}^{x_i} (x - y_i)^2 f(x) \, dx \approx f(y_i) \int_{x_{i-1}}^{x_i} (x - y_i)^2 \, dx
\]

(since \(f \) is continuous and \(x_i - x_{i-1} \) is small)

\[
\approx f(y_i) \int_{x_{i-1}}^{x_i} \left(x - \frac{x_i - x_{i-1} + x_i}{2} \right)^2 \, dx
\]

\[
= f(y_i) \frac{(x_i - x_{i-1})^3}{12}
\]

\[
\approx \frac{1}{12} f(y_i) \Delta^2 G'(y_i)^2 (x_i - x_{i-1})
\]

\[
= \frac{1}{12} f(y_i) \frac{B^2}{N^2} G'(y_i)^2 (x_i - x_{i-1})
\]

(by letting \(B = (b - a) \) so that \(\Delta = \frac{B}{N} \))
Putting things together

\[D(Q_{G,N}) \approx \sum_{i=2}^{N-1} \int_{x_{i-1}}^{x_i} (x - y_i)^2 f(x) \, dx \]

\[\approx \frac{B^2}{12N^2} \sum_{i=2}^{N-1} \frac{f(y_i)}{G'(y_i)^2} (x_i - x_{i-1}) \]

(Riemann sum)

\[\approx \frac{B^2}{12N^2} \int_{x_1}^{x_{N-1}} f(x) \, dx \]

\[\approx \frac{B^2}{12N^2} \int_{-\infty}^{\infty} f(x) \, dx \]

Conclusion: For MSE and \(N \) large

\[D(Q_{G,N}) \approx \frac{B^2}{12N^2} \int_{-\infty}^{\infty} f(x) \, dx \]

(Here \(\approx \) means that the ratio of the two sides converges to 1 as \(N \to \infty \))

Easy-to-calculate, analytic formula!

Example: Let \(X \sim f \) such that \(f(x) = 0 \) if \(x \notin (a, b) \). Consider the \(N \)-level uniform quantizer \(Q_\Delta \) over \((a, b)\), where \(\Delta = (b - a)/N \).

If \(G : (a, b) \to (a, b) \) is defined as \(G(x) = x \), then for all \(x \in (a, b) \)

\[Q_{N,G}(x) = G^{-1}(Q_\Delta(G(x))) = Q_\Delta(x) \]

From the compander approximation, for large \(N \)

\[D(Q_\Delta) = D(Q_{G,N}) \approx \frac{(b - a)^2}{12N^2} \int_{-\infty}^{\infty} \frac{f(x)}{G'(x)^2} \, dx \]

\[= \frac{1}{12} \left(\frac{b - a}{N} \right)^2 \int_{a}^{b} f(x) \, dx \] (since \(G'(x) = 1 \))

\[= \frac{\Delta^2}{12} \]

Intuitive explanation: If \(N \) is large, \(\Delta \) is small, and the pdf is approximately uniform over each quantizer cell

Optimal asymptotic performance

- We want to find the compressor \(G \) minimizing \(D(Q_{G,N}) \) for large \(N \).
- Any \(N \)-level quantizer can be represented as a companding quantizer with compressor function \(G : \mathbb{R} \to (0,1) \).
 \[\Rightarrow \text{It is enough to consider compressors } G : \mathbb{R} \to (0,1) \]
- In this case (since \(B = 1 \))

\[D(Q_{G,N}) \approx \frac{1}{12N^2} \int_{-\infty}^{\infty} \frac{f(x)}{G'(x)^2} \, dx \]

- We want to minimize

\[\int_{-\infty}^{\infty} \frac{f(x)}{G'(x)^2} \, dx \]
Theorem 4 (Optimal compressor)

Given the pdf \(f \), the compressor \(G : \mathbb{R} \to (0, 1) \) which minimizes
\[
\int_{-\infty}^{\infty} \frac{f(x)}{G'(x)^2} \, dx
\]
is determined by
\[
G'(x) = \frac{f(x)^{1/3}}{\int_{-\infty}^{\infty} f(y)^{1/3} \, dy}
\]
For the (asymptotically) optimal companding scheme using this \(G \)
\[
D(Q_{G,N}) \approx \frac{1}{12N^2} \left(\int_{-\infty}^{\infty} f(x)^{1/3} \, dx \right)^3
\]

Proof of Lemma 5: First we note that the strict concavity of \(\log(x) \)
implies that for any \(a, b \geq 0 \) and \(0 < \alpha < 1 \),
\[
a^\alpha b^{1-\alpha} \leq \alpha a + (1-\alpha)b
\]
where equality holds iff \(a = b \). (Proof: if \(ab > 0 \), take the logarithm of both sides.)
Define
\[
a(x) = \left(\frac{u(x)}{\|u\|_p} \right)^p, \quad b(x) = \left(\frac{v(x)}{\|v\|_q} \right)^q
\]
Let \(\alpha = \frac{1}{p} \) (so that \(1 - \alpha = \frac{1}{q} \)). From (*) we have
\[
\frac{u(x) \cdot v(x)}{\|u\|_p \cdot \|v\|_q} = a(x)^\alpha b(x)^{1-\alpha}
\]
\[
\leq \alpha a(x) + (1-\alpha)b(x)
\]
\[
= \alpha \left(\frac{u(x)}{\|u\|_p} \right)^p + (1-\alpha) \left(\frac{v(x)}{\|v\|_q} \right)^q
\]
Now integrate both sides.

Lemma 5 (Hölder’s inequality)

Assume \(p > 1 \) and \(q > 1 \) are such that \(\frac{1}{p} + \frac{1}{q} = 1 \). Let \(u(x) \geq 0 \) and \(v(x) \geq 0 \) satisfy
\[
\int_{-\infty}^{\infty} u(x)^p \, dx < \infty \quad \int_{-\infty}^{\infty} v(x)^q \, dx < \infty
\]
Then
\[
\int_{-\infty}^{\infty} u(x)v(x) \, dx \leq \left(\int_{-\infty}^{\infty} u(x)^p \, dx \right)^{1/p} \left(\int_{-\infty}^{\infty} v(x)^q \, dx \right)^{1/q}
\]
Moreover, equality holds iff \(v(x)^q = Cu(x)^p \) for some \(C > 0 \).

Remark: For any \(p > 0 \) and function \(g : \mathbb{R} \to \mathbb{R} \) define
\[
\|g\|_p = \left(\int_{-\infty}^{\infty} |g(x)|^p \, dx \right)^{1/p}
\]
Then Hölder’s inequality states that
\[
\int_{-\infty}^{\infty} u(x)v(x) \, dx \leq \|u\|_p \|v\|_q
\]

Proof of Lemma cont’d:
\[
\int_{-\infty}^{\infty} \frac{u(x) \cdot v(x)}{\|u\|_p \cdot \|v\|_q} \, dx
\]
\[
\leq \alpha \int_{-\infty}^{\infty} \left(\frac{u(x)}{\|u\|_p} \right)^p \, dx + (1-\alpha) \int_{-\infty}^{\infty} \left(\frac{v(x)}{\|v\|_q} \right)^q \, dx
\]
\[
= \alpha + (1-\alpha) = 1
\]
Hence
\[
\int_{-\infty}^{\infty} u(x)v(x) \, dx \leq \|u\|_p \|v\|_q
\]
Note that equality holds if and only if \(a(x) = b(x) \) for (almost) all \(x \), i.e.,
iff
\[
\left(\frac{u(x)}{\|u\|_p} \right)^p = \left(\frac{v(x)}{\|v\|_q} \right)^q
\]
This is equivalent to \(v(x)^q = Cu(x)^p \) for some \(C > 0 \). \(\square \)
Proof of Thm. 4: Let $G : \mathbb{R} \to (0, 1)$ be an arbitrary compressor. Define

$$u(x) = \left(\frac{f(x)}{G(x)^2} \right)^{1/3} \quad v(x) = G'(x)^{2/3}$$

and let $p = 3$, $q = 3/2$ (so that $\frac{1}{p} + \frac{1}{q} = 1$).

By Hölder’s inequality

$$\int_{-\infty}^{\infty} \left(\frac{f(x)}{G'(x)^2} \right)^{1/3} G'(x)^{2/3} \, dx \leq \left(\int_{-\infty}^{\infty} \frac{f(x)}{G'(x)^2} \, dx \right)^{1/3} \left(\int_{-\infty}^{\infty} G'(x) \, dx \right)^{2/3} = 1 \quad (\ast)$$

(\ast) follows since G is monotone increasing and maps onto $(0, 1)$ so

$$\int_{-\infty}^{\infty} G'(x) \, dx = \lim_{y \to \infty} \left[G(x) \right]_y^\infty = \lim_{y \to \infty} G(y) - \lim_{y \to -\infty} G(y) = 1 - 0 = 1$$

Proof of Thm. 4 cont’d:

We showed

$$\int_{-\infty}^{\infty} \frac{f(x)}{G'(x)^2} \, dx \geq \left(\int_{-\infty}^{\infty} f(x)^{1/3} \, dx \right)^3 \quad (\ast\ast)$$

From Lemma 5, the lower bound (\ast\ast) is achieved by G iff

$$G'(x) = C \frac{f(x)}{G'(x)^2} \iff G'(x) = \hat{C} f(x)^{1/3}$$

Since $\int_{-\infty}^{\infty} G'(x) \, dx = 1$, we get $\hat{C} = \left(\int_{-\infty}^{\infty} f(x)^{1/3} \, dx \right)^{-1}$

Thus the optimal compressor satisfies

$$G'(x) = \frac{f(x)^{1/3}}{\int_{-\infty}^{\infty} f(y)^{1/3} \, dy}$$

\[\square \]

The 6 dB per bit rule

- Consider the SNR as a function of $R = \log_2 N$. Since $N^{-2} = 2^{-2R}$

$$D^*(N) \approx \frac{1}{N^2} \frac{1}{12} \| f \|_{1/3} = 2^{-2R} C(f)$$

where $C(f) = \frac{1}{12} \| f \|_{1/3}$ does not depend on N.

- Thus the SNR in dB is

$$\text{SNR} \approx 10 \log_{10} \left(\frac{E(X^2)}{2^{-2R} C(f)} \right) = R \cdot 20 \log_{10} 2 + 10 \log_{10} \left(\frac{E(X^2)}{C(f)} \right) \approx 6.02$$

- **Rule of thumb**: increasing the rate by 1 bit results in a 6 dB increase in SNR.

We have “proved” that for continuous sources with a pdf and N large

$$D^*(N) = \min_G D(Q_{G,N}) \approx \frac{1}{12 N^2} \| f \|_{1/3}$$

The exact result (which is much harder to prove) is

Theorem 6 (Bucklew and Wise)

Assume the source pdf satisfies $\int_{-\infty}^{\infty} |x|^{2+\epsilon} f(x) \, dx < \infty$ for some $\epsilon > 0$. Then

$$\lim_{N \to \infty} N^2 D^*(N) = \frac{1}{12} \| f \|_{1/3}$$