Assignment 3, Due Nov. 8

1) Suppose that \(f \) is an essentially bounded (Lebesgue) measurable function on \([0, 1]\), and \(\|f\|_p \) be the \(p \)-norm of \(f \) with respect to Lebesgue measure. Show that
\[
\lim_{p \to \infty} \|f\|_p = \|f\|_\infty.
\]

2) For \(0 < p < 1 \) let
\[
\|f\|_p = \left(\int_0^1 |f(x)|^p \, dx \right)^{\frac{1}{p}}
\]
and \(L^p([0, 1]) = \{ f : [0, 1] \to \mathbb{C} \mid f \) is measurable and \(\|f(x)\|_p < \infty \} \). Show that \(L^p([0, 1]) \) is a vector space.

3) Let \(m \) be Lebesgue measure on \(\mathbb{R} \) and suppose \(f \in L^1(m) \). Fix \(y \in \mathbb{R} \) and let \(g(x) = f(x - y) \). Show that \(g \) is integrable and that \(\int f \, dm = \int g \, dm \).

4) Let \(m \) be Lebesgue measure on \(\mathbb{R} \) and suppose \(f \in L^1(m) \). Fix \(c \in \mathbb{R} \), with \(c \neq 0 \), and let \(g(x) = f(cx) \). Show that \(g \) is integrable and find a formula for \(\int g \, dm \) in terms of \(\int f \, dm \).

5) Let \(m \) denote Lebesgue measure on \(\mathbb{R} \).

 i) Let \(E \subseteq \mathbb{R} \) and denote by \(E_2 \) the set \(\{(x, y) \mid x - y \in E\} \). Show that if \(E \) is a Borel set then \(E_2 \) is a Borel subset of \(\mathbb{R}^2 \).

ii) If \(f : \mathbb{R} \to \mathbb{C} \) is a Borel function and \(F(x, y) = f(x - y) \) then \(F : \mathbb{R}^2 \to \mathbb{C} \) is a Borel function.

iii) Suppose \(f, g \in L^1(\mathbb{R}) \). Let \(x \in \mathbb{R} \) and \(\phi_x(y) = f(y)g(x - y) \). Show that for almost all \(x \), \(\phi_x \) is integrable. For such \(x \) let \(\psi(x) = \int \phi_x \, dm \) and let \(\psi(x) = 0 \) if \(\phi_x \) is not integrable. Show
\[
\int |\psi| \, dm \leq \int |f| \, dm \int |g| \, dm.
\]