1. Compute each of the following vectors.

(a) \[
\begin{bmatrix}
5 & 1 \\
2 & 1 \\
7 & 3
\end{bmatrix}
\begin{bmatrix}
2 \\
-3
\end{bmatrix}
\]

(b) \[
\begin{bmatrix}
8 & -7 & -4 \\
1 & 5 & 3
\end{bmatrix}
\begin{bmatrix}
3 \\
2
\end{bmatrix}
\]

(c) \[
\begin{bmatrix}
-1 & 3 \\
4 & 0
\end{bmatrix}
\begin{bmatrix}
6 \\
2
\end{bmatrix}
\]

(d) \[
\begin{bmatrix}
2 & 3 & 1 \\
0 & 1 & -4 \\
2 & 5 & 7
\end{bmatrix}
\begin{bmatrix}
-3 \\
5 \\
2
\end{bmatrix}
\]

Solution.

(a) \[
\begin{bmatrix}
5 & 1 \\
2 & 1 \\
7 & 3
\end{bmatrix}
\begin{bmatrix}
2 \\
-3
\end{bmatrix} = 2 \begin{bmatrix}
5 \\
2 \\
7
\end{bmatrix} - 3 \begin{bmatrix}
1 \\
1 \\
3
\end{bmatrix} = \begin{bmatrix}
7 \\
1 \\
5
\end{bmatrix}.
\]

(b) \[
\begin{bmatrix}
8 & -7 & -4 \\
1 & 5 & 3
\end{bmatrix}
\begin{bmatrix}
3 \\
2 \\
1
\end{bmatrix} = 3 \begin{bmatrix}
8 \\
1
\end{bmatrix} + 2 \begin{bmatrix}
-7 \\
5
\end{bmatrix} + 1 \begin{bmatrix}
-4 \\
3
\end{bmatrix} = \begin{bmatrix}
6 \\
16
\end{bmatrix}.
\]

(c) \[
\begin{bmatrix}
-1 & 3 \\
4 & 0
\end{bmatrix}
\begin{bmatrix}
6 \\
2
\end{bmatrix} = 6 \begin{bmatrix}
-1 \\
4
\end{bmatrix} + 2 \begin{bmatrix}
3 \\
0
\end{bmatrix} = \begin{bmatrix}
0 \\
24
\end{bmatrix}.
\]

(d) \[
\begin{bmatrix}
2 & 3 & 1 \\
0 & 1 & -4 \\
2 & 5 & 7
\end{bmatrix}
\begin{bmatrix}
-3 \\
5 \\
2
\end{bmatrix} = -3 \begin{bmatrix}
2 \\
0 \\
2
\end{bmatrix} + 5 \begin{bmatrix}
3 \\
1 \\
5
\end{bmatrix} + 2 \begin{bmatrix}
-4 \\
-1 \\
7
\end{bmatrix} = \begin{bmatrix}
11 \\
-3 \\
33
\end{bmatrix}.
\]

2. Compute the standard matrix for each of the following linear transformations.

(a) The linear transformation \(T: \mathbb{R}^3 \rightarrow \mathbb{R}\) given by \(T(\vec{v}) = \vec{u} \cdot \vec{v}\), where \(\vec{u} = (2, 4, 3)\).

(b) The linear transformation \(T: \mathbb{R}^3 \rightarrow \mathbb{R}^3\) from given by \(T(\vec{v}) = \vec{u} \times \vec{v}\) where \(\vec{u} = (u_1, u_2, u_3)\). (This is the linear transformation that appeared in H5, Question 3.)

(c) The linear transformation \(T: \mathbb{R}^3 \rightarrow \mathbb{R}^3\) which is “rotate by \(\pi/2\) counterclockwise around the \(z\)-axis”. (Here “counterclockwise” means if you are on the positive \(z\)-axis looking down at the \(xy\)-plane, you want to rotate it counterclockwise.)
Solution. If \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is a linear transformation, then the standard matrix for \(T \) is the \(m \times n \) matrix whose columns are \(T(\vec{e}_1), T(\vec{e}_2), \ldots, T(\vec{e}_n) \).

(a) Since \(T(\vec{e}_1) = 2, T(\vec{e}_2) = 4, \) and \(T(\vec{e}_3) = 3 \) the standard matrix for \(T \) is \[
\begin{bmatrix}
2 & 4 & 3
\end{bmatrix}.
\]

(b) Since \(T(\vec{e}_1) = \vec{u} \times \vec{e}_1 = (0, u_3, -u_2), T(\vec{e}_2) = \vec{u} \times \vec{e}_2 = (-u_3, 0, u_1), \) and \(T(\vec{e}_3) = (u_2, -u_1, 0) \) the standard matrix for \(T \) is
\[
\begin{bmatrix}
0 & -u_3 & u_2 \\
u_3 & 0 & -u_1 \\
-u_2 & u_1 & 0
\end{bmatrix}.
\]

(c) Since \(T(\vec{e}_1) = \vec{e}_2, T(\vec{e}_2) = -\vec{e}_1, \) and \(T(\vec{e}_3) = \vec{e}_3 \) (see the picture below), the standard matrix for \(T \) is
\[
\begin{bmatrix}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}.
\]

3. Given a line \(L \) in \(\mathbb{R}^2 \), projection onto \(L \) is the function \(\mathbb{R}^2 \rightarrow \mathbb{R}^2 \) which sends every point in \(\mathbb{R}^2 \) to the nearest point on \(L \), as shown in the diagram at right.

For any \(m \), let \(T_m : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be the projection onto the line with slope \(m \) through the origin. This turns out to be a linear transformation, something you can assume when doing the question.

(a) Find the standard matrix for \(T_m \), and explain your steps.

(b) As \(m \rightarrow \infty \), what happens to the line of slope \(m \)? What happens to the matrix associated to \(T_m \)? Does this make sense?

Suggestion for (a): Start by finding two vectors where it is easy to understand the result of applying \(T_m \), and then use linear combinations to deduce what \(T_m \) does to \(\vec{e}_1 \) and \(\vec{e}_2 \). (Another possibility : Use the projection formula.)
Solution.

(a) The standard matrix for T_m is $A_m = \begin{bmatrix} \frac{1}{1+m^2} & \frac{m}{1+m^2} \\ \frac{m}{1+m^2} & \frac{1}{1+m^2} \end{bmatrix}$.

Following the suggestions, here are two ways to solve this problem.

Solution I: There are two vectors in \mathbb{R}^2 where it is clear what the projection has to do: for vectors on the line of slope m the projection T_m does nothing, and for vectors perpendicular to the line, the projection T_m sends them to $\vec{0} = (0, 0)$.

A vector lying on the line of slope m is $\vec{v}_1 = (1, m)$, and a vector perpendicular to this line is $\vec{v}_2 = (-m, 1)$. Writing out the previous observations in mathematical notation, we know that

$$T_m \left(\begin{bmatrix} 1 \\ m \end{bmatrix}\right) = \begin{bmatrix} 1 \\ m \end{bmatrix} \quad \text{and} \quad T_m \left(\begin{bmatrix} -m \\ 1 \end{bmatrix}\right) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

In order to see what T_m does to \vec{e}_1 and \vec{e}_2 we can use the same strategy as in **H5, Question 1**: write \vec{e}_1 and \vec{e}_2 as linear combinations of \vec{v}_1 and \vec{v}_2, and use the linearity of T_m to figure out what happens to \vec{e}_1 and \vec{e}_2.

We can write \vec{e}_1 and \vec{e}_2 as

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{1+m^2} \begin{bmatrix} 1 \\ m \end{bmatrix} - \frac{m}{1+m^2} \begin{bmatrix} -m \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{m}{1+m^2} \begin{bmatrix} 1 \\ m \end{bmatrix} + \frac{1}{1+m^2} \begin{bmatrix} -m \\ 1 \end{bmatrix}$$

which is something we can work out either by inspection, or in the usual way, by row reducing the matrix describing this linear algebra problem

$$\begin{bmatrix} 1 & -m & 1 & 0 \\ m & 1 & 0 & 1 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 0 & \frac{1}{1+m^2} & \frac{m}{1+m^2} \\ 0 & 1 & -\frac{m}{1+m^2} & \frac{1}{1+m^2} \end{bmatrix}.$$

Using the linearity of T, we can now conclude that

$$T \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) = \frac{1}{1+m^2} T \left(\begin{bmatrix} 1 \\ m \end{bmatrix}\right) + \frac{m}{1+m^2} T \left(\begin{bmatrix} m \\ -1 \end{bmatrix}\right)$$

$$= \frac{1}{1+m^2} \begin{bmatrix} 1 \\ m \end{bmatrix} + \frac{m}{1+m^2} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{1+m^2} \\ \frac{m}{1+m^2} \end{bmatrix}.$$
and

\[
T \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \frac{m}{1 + m^2} T \left(\begin{bmatrix} 1 \\ m \end{bmatrix} \right) - \frac{1}{1 + m^2} T \left(\begin{bmatrix} m \\ -1 \end{bmatrix} \right)
\]

\[
= \frac{m}{1 + m^2} \begin{bmatrix} 1 \\ m \end{bmatrix} - \frac{1}{1 + m^2} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{m}{1+m^2} \\ \frac{m^2}{1+m^2} \end{bmatrix} \]

This gives the standard matrix above.

Solution II: Use the projection formula. Let \(w = (1, m) \), which is a vector on the line of slope \(m \). The linear transformation \(T_m \) is projection onto \(\vec{w} \), and we know the formula for this: \(\text{proj}_{\vec{w}}(\vec{v}) = \left(\frac{\vec{v} \cdot \vec{w}}{\|\vec{w}\|^2} \right) \vec{w} \).

To find the standard matrix of the linear transformation, we just have to see where \(\vec{e}_1 \) and \(\vec{e}_2 \) go. The projection formula tells us that

\[
T_m(\vec{e}_1) = \text{proj}_{\vec{w}}(\vec{e}_1) = \left(\frac{\vec{e}_1 \cdot \vec{w}}{\|\vec{w}\|^2} \right) \vec{w} = \left(\frac{1}{(1 + m^2)} \right) \begin{bmatrix} 1 \\ m \end{bmatrix} = \begin{bmatrix} \frac{1}{1+m^2} \\ \frac{m}{1+m^2} \end{bmatrix},
\]

\[
T_m(\vec{e}_2) = \text{proj}_{\vec{w}}(\vec{e}_2) = \left(\frac{\vec{e}_2 \cdot \vec{w}}{\|\vec{w}\|^2} \right) \vec{w} = \left(\frac{m}{(1 + m^2)} \right) \begin{bmatrix} 1 \\ m \end{bmatrix} = \begin{bmatrix} \frac{m}{1+m^2} \\ \frac{m^2}{1+m^2} \end{bmatrix}
\]

And that again gives the standard matrix shown above.

(b) As \(m \to \infty \) the line of slope \(m \) becomes vertical. As \(m \to \infty \) the matrix \(A_m \) becomes

\[
\lim_{m \to \infty} A_m = \lim_{m \to \infty} \left[\begin{bmatrix} \frac{1}{1+m^2} & \frac{m}{1+m^2} \\ \frac{m}{1+m^2} & \frac{1}{1+m^2} \end{bmatrix} \right] = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}
\]

which is the matrix for projection onto the \(y \) axis, just as expected.

4. In this problem we will finish the proof of the theorem from the class of Thursday, October 20th.

Let \(A \) be an \(m \times n \) matrix, and define a function \(T : \mathbb{R}^n \to \mathbb{R}^m \) by the rule \(T(\vec{v}) = A\vec{v} \) for each \(\vec{v} \in \mathbb{R}^n \). We want to show that \(T \) is a linear transformation.
In order to prove this, it will help to explicitly write out what “$A\vec{v}$” means. Let $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_n$ be the column vectors of A. Then for $\vec{v} = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$, $A\vec{v}$ is the vector $x_1\vec{w}_1 + x_2\vec{w}_2 + \cdots + x_n\vec{w}_n$ in \mathbb{R}^m.

Therefore, the issue really is: Show that the function $T: \mathbb{R}^n \rightarrow \mathbb{R}^m$ defined by the rule

$$T(x_1, x_2, \ldots, x_n) = x_1\vec{w}_1 + x_2\vec{w}_2 + \cdots + x_n\vec{w}_n$$

is a linear transformation.

Your mission in this question: Show it!

Solution.

Addition Test: For vectors $\vec{v} = (x_1, x_2, \ldots, x_n)$ and $\vec{w} = (y_1, y_2, \ldots, y_n)$ in \mathbb{R}^n,

\[
T(\vec{v} + \vec{w}) = T(x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n) = (x_1 + y_1)\vec{w}_1 + (x_2 + y_2)\vec{w}_2 + \cdots + (x_n + y_n)\vec{w}_n \\
= x_1\vec{w}_1 + y_1\vec{w}_1 + x_2\vec{w}_2 + y_2\vec{w}_2 + \cdots + x_n\vec{w}_n + y_n\vec{w}_n \\
= (x_1\vec{w}_1 + x_2\vec{w}_2 + \cdots + x_n\vec{w}_n) + (y_1\vec{w}_1 + y_2\vec{w}_2 + \cdots + y_n\vec{w}_n) \\
= T(x_1, \ldots, x_n) + T(y_1, \ldots, y_n) = T(\vec{v}_1) + T(\vec{v}_2).
\]

Since the vectors \vec{v} and \vec{w} were arbitrary, T passes the general addition test.

Scalar Multiplication Test: For a vector $\vec{v} = (x_1, \ldots, x_n) \in \mathbb{R}^n$, and scalar $c \in \mathbb{R}$,

\[
T(c\vec{v}) = T(cx_1, cx_2, \ldots, cx_n) = (cx_1)\vec{w}_1 + (cx_2)\vec{w}_2 + \cdots + (cx_n)\vec{w}_n \\
= c(x_1\vec{w}_1 + x_2\vec{w}_2 + \cdots + x_n\vec{w}_n) = cT(x_1, \ldots, x_n) = cT(\vec{v}).
\]

Since c and \vec{v} were arbitrary, T passes the general scalar multiplication test. Since T passes both tests, T is a linear transformation.