1. Suppose that \(T : \mathbb{R}^3 \rightarrow \mathbb{R}^2 \) is given (in the standard coordinates) by the matrix
 \[
 A = \begin{bmatrix}
 2 & 1 & 5 \\
 1 & 1 & 3
 \end{bmatrix}.
 \]

 Let \(B \) be the basis \(B = [(1, 1, 1), (2, 0, 1), (3, 2, 1)] \) of \(\mathbb{R}^3 \), and let \(A \) be the basis \(A = [(3, 5), (1, 2)] \) of \(\mathbb{R}^2 \), find the matrix for \(T \) with respect to the new basis on both sides.

2. Let \(\vec{v}_1 = (1, 2), \vec{v}_2 = (2, -1) \), and let \(B \) be the basis \(B = [\vec{v}_1, \vec{v}_2] \) of \(\mathbb{R}^2 \).

 Let \(T \) be the linear transformation from \(\mathbb{R}^2 \) to \(\mathbb{R}^2 \) given by \(T(\vec{v}_1) = \vec{v}_1 \) and \(T(\vec{v}_2) = \vec{0} \).

 (a) Write down the matrix for \(T \) in the new basis \(B \). (You should be able to do this directly from the definition of \(T \) and the definition of “writing the matrix of a linear transformation with respect to a basis”).

 (b) Use this to write down the matrix for \(T \) in the standard basis.

 You might want to compare the answer for (b) with the answer for H6 3(a), with \(m = 2 \). Can you see why these are the same?

 \textbf{Note:} In part (b) you need to go from the matrix in \(B \)-basis form to the matrix in standard basis form, which is the reverse of what we did in class, so think for a bit to figure out which way the change of basis matrices should go.

3. We’ll check in class that the determinant of a square matrix doesn’t change when we change basis. The purpose of this question is to show that the \textit{trace} of a matrix also doesn’t change when we change basis.

 For an \(n \times n \) matrix \(A \), the \textit{trace} of \(A \), \(\text{tr}(A) \) is the sum of the numbers on the diagonal. For instance, if
 \[
 A = \begin{bmatrix}
 1 & 3 & 5 \\
 2 & 7 & 9 \\
 6 & 0 & 4
 \end{bmatrix}
 \]
 then \(\text{tr}(A) = 1 + 7 + 4 = 12 \).

 In the \(a_{ij} \) notation for the entries of a matrix, \(\text{tr}(A) = a_{11} + a_{22} + a_{33} + \cdots + a_{nn} \).

 (a) If \(A \) and \(B \) are \(n \times n \) matrices, prove that \(\text{tr}(AB) = \text{tr}(BA) \) (the formula in the book for \(ij \)-th entry for a product of matrices may help).
(b) Suppose that A is an $n \times m$ matrix and B an $m \times n$ matrix. Then both products AB (an $n \times n$ matrix) and BA (an $m \times m$ matrix) are square matrices, so we can take their traces. PROVE OR DISPROVE: $\text{tr}(AB) = \text{tr}(BA)$ in this case.

(c) If C is an $n \times n$ matrix, and M an invertible $n \times n$ matrix, prove that

$$\text{tr}(C) = \text{tr}(M^{-1}CM).$$

SUGGESTION: If you make the right choice of matrices A and B, part (c) will follow from part (a) with very little work.

4. Suppose that x_1, x_2, \ldots, x_n are numbers. The $n \times n$ matrix

$$A = \begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
x_1 & x_2 & x_3 & \cdots & x_n \\
x_1^2 & x_2^2 & x_3^2 & \cdots & x_n^2 \\
x_1^3 & x_2^3 & x_3^3 & \cdots & x_n^3 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1}
\end{bmatrix}$$

is called the Vandermonde matrix, and is surprisingly useful to know a few basic facts about it. Let’s establish one of them now.

If any of the two x_i’s are equal to each other, then of course $\det(A) = 0$ since we will have two repeated columns. What we’d like to show is that if all of the x_i’s are different, then $\det(A) \neq 0$, i.e., that A is an invertible matrix.

(a) Explain why showing that $\det(A) \neq 0$ is the same as showing that $\det(A^t) \neq 0$, where A^t means the transpose of A. [This is a very short answer].

(b) Suppose that A^t is invertible. Explain why this means that $\text{Ker}(A^t) = \{\vec{0}\}$.

(c) Conversely, suppose that $\text{Ker}(A^t) = \{\vec{0}\}$. Explain why this means that A^t is invertible. (SUGGESTION: The rank-nullity theorem may help at one point.)

(d) Explain why showing that $\det(A^t) \neq 0$ is the same as showing that the only vector in $\text{Ker}(A^t)$ is the zero vector.

(e) If $\vec{v} = (c_0, c_1, \ldots, c_{n-1})$ is a vector in the kernel of A^t, and \vec{v} is not the zero vector, explain how this would give you a polynomial of degree $\leq n - 1$ with more than $n - 1$ roots, which would be a contradiction. [HINT: write out what $A^t\vec{v} = \vec{0}$ means.] Make sure that you answer carefully, for instance, in your explanation why is it important that all the x_i’s be different?